1
|
Zhao X, Xu Y, Feng J, Chen C, Gao Y, Deng Y. Comprehensive analysis of miRNAs-lncRNAs-mRNAs modules and ceRNA network in acute liver failure: Hsa-miR3175 and C-reactive protein determination. Int J Biol Macromol 2024; 276:133919. [PMID: 39029818 DOI: 10.1016/j.ijbiomac.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Acute liver failure (ALF), also known as fulminant hepatitis, coagulation disorders, and worsening mental status. It has a poor prognosis and high mortality rate. Among these, the top 10 upregulated genes included GKA-DPA1, IGLL5, PLA2G7, CCL5, IGLJ, GUSBP11, RHOBT1, IGLL3P, CCL18, and ADRBK2. On the other hand, the top 10 downregulated genes were SLC6A1, PID1, AVPR1A, PP1R1A, ST3GAL6, TPST, ERO1LB, SLCO4C1, and KLF15. Furthermore, the DEGs were found to be enriched in processes related to LIAO metastasis and creighton endocrine therapy resistance. To explore the interactions among the DEGs, we constructed a PPI network. This network revealed 16 hub genes that play crucial roles in ALF pathogenesis. Within this network, hsa-mir-375 and hsa-mir-650 were identified as central nodes, indicating their potential importance in ALF. By identifying and analyzing the transcriptional-level ceRNA network, we have provided valuable insights into the etiology of ALF.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Junqi Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Chen Chen
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| |
Collapse
|
2
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
3
|
Wang Y, Zhou C, Fu Y, Zhang L, Liu S, Cai L, Jiang Z, Xu X, Feng L, Gao Y. Establishment of acute liver failure model in Tibetan miniature pig and verified by dual plasma molecular adsorption system. Int J Artif Organs 2023; 46:141-152. [PMID: 36600401 DOI: 10.1177/03913988221145501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is a severe liver disease with high morbidity and mortality rates. Animal models are important for research on ALF. This study aimed to establish a reproducible, Tibetan miniature pig model of D-galactosamine-induced ALF and verify it using a dual plasma molecular adsorption system (DPMAS). METHODS Tibet miniature pigs were randomly divided into four groups (A, B, C, D) after catheterization. D-galactosamine (D-gal) at 0.45, 0.40, 0.35, and 0.35 g/kg body weight, respectively, was injected through the catheter. Group D was treated with DPMAS 48 h after D-gal administration. Vital signs and blood index values were recorded every 12 h after D-gal administration. H&E, TUNEL, Ki67, and Masson staining tests were performed. RESULTS After D-gal administration, Tibetan miniature pigs developed different degrees of debilitation, loss of appetite, and jaundice. Survival times of groups A, B, C, and D were 39.7 ± 5.9, 53.0 ± 12.5,61.3 ± 8.1, and 61 ± 7 h, respectively. Blood levels of ALT, AST, TBIL, ammonia, PT, and inflammation factors significantly increased compared with baseline levels in the different groups (Ps < 0.05). Pathological results revealed a clear liver cell necrosis positive correlation with D-gal dose. However, DPMAS did not increase the survival time in ALF, ammonia, or liver cell necrosis. CONCLUSION We successfully established a reproducible Tibetan miniature pig model of d-galactosamine-induced ALF, and we believe that a dosage of 0.35 g/kg is optimal.
Collapse
Affiliation(s)
- Yi Wang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenjie Zhou
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linya Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shusong Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zesheng Jiang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Feng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Xue W, Fu Y, Zhang H, Li G, Cao P, Li Y, Peng Q, Zhong K, Feng S, Gao Y. A novel, simplified, and reproducible porcine model of acute ischemic liver failure with portal vein preservation. Exp Anim 2022; 71:60-70. [PMID: 34497163 PMCID: PMC8828402 DOI: 10.1538/expanim.21-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
The current ischemic models of liver failure are difficult and usually time-consuming to produce. The aim of this study was to develop a simplified and reproducible porcine model of acute liver failure for use in preclinical research. Eighteen Bama miniature pigs were randomly divided into Groups A, B, and C. The hepatic artery and common bile duct were ligated in all groups. While the portal vein was completely preserved in Group A, it was narrowed by 1/3 and 1/2 in Groups B and C, respectively. Results of biochemical analyses, encephalopathy scores, and survival times were compared among the groups. Results of hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, Masson staining, and Ki-67 analyses were recorded. Survival times in Groups B and C were 11.67 ± 1.86 and 2.16 ± 0.75 days, respectively, shorter than that in Group A (>15 days). Following surgery, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, total bilirubin, and direct bilirubin levels significantly increased relative to baseline values in all groups (P<0.05). Groups B and C exhibited a significant decrease in encephalopathy scores and a significant increase in ammonia levels, which were negatively correlated with one another. Pathological analysis revealed obvious necrosis of liver cells, which correlated closely with the degree of portal vein constriction. Our simple, highly reproducible model effectively mimics the clinical characteristics of acute liver failure in humans and provides a foundation for further research on artificial liver support system development.
Collapse
Affiliation(s)
- Weisong Xue
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Yu Fu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Haojie Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Guoping Li
- Beijing Grand Lifescience & technology, Ltd., No. 8, Shengmingyuan Road, Changping District, Beijing 100000, P.R. China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Kebo Zhong
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Shuangtang Feng
- Beijing Grand Lifescience & technology, Ltd., No. 8, Shengmingyuan Road, Changping District, Beijing 100000, P.R. China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
- State Key Laboratory of Organ Failure Research, Southern Medical University, No. 1023, Shatai Road, Baiyun District, Guangzhou 510050, Guangdong Province, P.R. China
| |
Collapse
|
5
|
Feng L, Cai L, He GL, Weng J, Li Y, Pan MX, Jiang ZS, Peng Q, Gao Y. Novel D-galactosamine-induced cynomolgus monkey model of acute liver failure. World J Gastroenterol 2017; 23:7572-7583. [PMID: 29204057 PMCID: PMC5698250 DOI: 10.3748/wjg.v23.i42.7572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/17/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a simplified, reproducible D-galactosamine-induced cynomolgus monkey model of acute liver failure having an appropriate treatment window.
METHODS Sixteen cynomolgus monkeys were randomly divided into four groups (A, B, C and D) after intracranial pressure (ICP) sensor implantation. D-galactosamine at 0.3, 0.25, 0.20 + 0.05 (24 h interval), and 0.20 g/kg body weight, respectively, was injected via the small saphenous vein. Vital signs, ICP, biochemical indices, and inflammatory factors were recorded at 0, 12, 24, 36, 48, 72, 96, and 120 h after D-galactosamine administration. Progression of clinical manifestations, survival times, and results of H&E staining, TUNEL, and Masson staining were recorded.
RESULTS Cynomolgus monkeys developed different degrees of debilitation, loss of appetite, and jaundice after D-galactosamine administration. Survival times of groups A, B, and C were 56 ± 8.7 h, 95 ± 5.5 h, and 99 ± 2.2 h, respectively, and in group D all monkeys survived the 144-h observation period except for one, which died at 136 h. Blood levels of ALT, AST, CK, LDH, TBiL, Cr, BUN, and ammonia, prothrombin time, ICP, endotoxin, and inflammatory markers [(tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6)] significantly increased compared with baseline values in different groups (P < 0.05). Pathological results showed obvious liver cell necrosis that was positively correlated with the dose of D-galactosamine.
CONCLUSION We successfully established a simplified, reproducible D-galactosamine-induced cynomolgus monkey model of acute liver failure, and the single or divided dosage of 0.25 g/kg is optimal for creating this model.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Guo-Lin He
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Ming-Xin Pan
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Ze-Sheng Jiang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| |
Collapse
|