1
|
Alves DVL, Claudio-da-Silva C, Souza MCA, Pinho RT, da Silva WS, Sousa-Vasconcelos PS, Borojevic R, Nogueira CM, Dutra HDS, Takiya CM, Bonfim DC, Rossi MID. Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro. Int J Stem Cells 2023; 16:425-437. [PMID: 37643763 PMCID: PMC10686802 DOI: 10.15283/ijsc22172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.
Collapse
Affiliation(s)
- Daiana V. Lopes Alves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Integrated Laboratory of Morphology, Institute of Biodiversity and Sustainability, NUPEM, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Cesar Claudio-da-Silva
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Surgery Department, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo C. A. Souza
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Surgery Department, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosa T. Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | - Radovan Borojevic
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carmen M. Nogueira
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hélio dos S. Dutra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle C. Bonfim
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Isabel D. Rossi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Xiang W, Li L, Hong F, Zeng Y, Zhang J, Xie J, Shen G, Wang J, Fang Z, Qi W, Yang X, Gao G, Zhou T. N-cadherin cleavage: A critical function that induces diabetic retinopathy fibrosis via regulation of β-catenin translocation. FASEB J 2023; 37:e22878. [PMID: 36939278 DOI: 10.1096/fj.202201664rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-β-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gang Shen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhong Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
3
|
Chang SF, Yang WH, Cheng CY, Luo SJ, Wang TC. γ-secretase inhibitors, DAPT and RO4929097, promote the migration of Human Glioma Cells via Smad5-downregulated E-cadherin Expression. Int J Med Sci 2021; 18:2551-2560. [PMID: 34104086 PMCID: PMC8176174 DOI: 10.7150/ijms.50484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are a type of central nervous system cancer with extremely high mortality rates in humans. γ-secretase has been becoming a potential target for cancer therapy, including glioma, because of the involvement of its enzymatic activity in regulating the proliferation and metastasis of cancer cells. In this study, we attempted to determine whether γ-secretase activity regulates E-cadherin to affect glioma cell migration. The human glioma cell lines, including LN18 and LN229, and the γ-secretase inhibitors, including N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) and RO4929097, were used in this study. It was shown that γ-secretase activity inhibition by DAPT and RO4929097 could promote LN18 and LN229 glioma cell migration via downregulating E-cadherin mRNA and protein expressions, but not via affecting E-cadherin protein processing. In addition, γ-secretase activity inhibition was regulated by bone morphogenetic proteins-independent Smad5 activation in glioma cells. Moreover, endogenous Smad1 in glioma cells was found to play an important role in regulating E-cadherin expression and subsequent cell migration but did not affect DAPT-stimulated effects. These results help further elucidate the molecular mechanisms of γ-secretase activity regulation involved in controlling glioma cell malignancy. Information about a potential role for Smad1/5 activity upregulation and subsequent E-cadherin downregulation during inhibition of γ-secretase activity in the development of gliomas is therefore relevant for future research.
Collapse
Affiliation(s)
- Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Wei-Hsun Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Cheng
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Sheng-Jie Luo
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Dias RB, Guimarães JAM, Cury MB, Rocha LR, da Costa ES, Nogueira LP, Hochman-Mendez C, Fortuna-Costa A, Silva AKF, Cunha KS, de Souza SAL, Duarte MEL, Sartore RC, Bonfim DC. The Manufacture of GMP-Grade Bone Marrow Stromal Cells with Validated In Vivo Bone-Forming Potential in an Orthopedic Clinical Center in Brazil. Stem Cells Int 2019; 2019:2608482. [PMID: 31781235 PMCID: PMC6875385 DOI: 10.1155/2019/2608482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Abstract
In vitro-expanded bone marrow stromal cells (BMSCs) have long been proposed for the treatment of complex bone-related injuries because of their inherent potential to differentiate into multiple skeletal cell types, modulate inflammatory responses, and support angiogenesis. Although a wide variety of methods have been used to expand BMSCs on a large scale by using good manufacturing practice (GMP), little attention has been paid to whether the expansion procedures indeed allow the maintenance of critical cell characteristics and potency, which are crucial for therapeutic effectiveness. Here, we described standard procedures adopted in our facility for the manufacture of clinical-grade BMSC products with a preserved capacity to generate bone in vivo in compliance with the Brazilian regulatory guidelines for cells intended for use in humans. Bone marrow samples were obtained from trabecular bone. After cell isolation in standard monolayer flasks, BMSC expansion was subsequently performed in two cycles, in 2- and 10-layer cell factories, respectively. The average cell yield per cell factory at passage 1 was of 21.93 ± 12.81 × 106 cells, while at passage 2, it was of 83.05 ± 114.72 × 106 cells. All final cellular products were free from contamination with aerobic/anaerobic pathogens, mycoplasma, and bacterial endotoxins. The expanded BMSCs expressed CD73, CD90, CD105, and CD146 and were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages in vitro. Most importantly, nine out of 10 of the cell products formed bone when transplanted in vivo. These validated procedures will serve as the basis for in-house BMSC manufacturing for use in clinical applications in our center.
Collapse
Affiliation(s)
- Rhayra B. Dias
- Master Program in Musculoskeletal Sciences, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - João A. M. Guimarães
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Marco B. Cury
- Hip Surgery Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Leonardo R. Rocha
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Elaine S. da Costa
- Institute of Paediatrics and Puericulture Martagão Gesteira, Federal University of Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
| | | | - Camila Hochman-Mendez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Texas Heart Institute, Regenerative Medicine Research, Texas 77030, USA
| | - Anneliese Fortuna-Costa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Anna Karoline F. Silva
- Graduate Program in Pathology, Fluminense Federal University, Rio de Janeiro 24030-215, Brazil
| | - Karin S. Cunha
- Graduate Program in Pathology, Fluminense Federal University, Rio de Janeiro 24030-215, Brazil
| | - Sergio A. L. de Souza
- Department of Radiology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Maria Eugênia L. Duarte
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafaela C. Sartore
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Danielle C. Bonfim
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| |
Collapse
|
5
|
Atrophic nonunion stromal cells form bone and recreate the bone marrow environment in vivo. OTA Int 2018; 1:e008. [PMID: 33937646 PMCID: PMC7953495 DOI: 10.1097/oi9.0000000000000008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/15/2018] [Indexed: 12/26/2022]
Abstract
Introduction: Nonunion is a challenging condition in orthopaedics as its etiology is not fully understood. Clinical interventions currently aim to stimulate both the biological and mechanical aspects of the bone healing process by using bone autografts and surgical fixation. However, recent observations showed that atrophic nonunion tissues contain putative osteoprogenitors, raising the hypothesis that its reactivation could be explored to achieve bone repair. Methods: Here we characterized atrophic nonunion stromal cells (NUSC) in vitro, using bone marrow stromal cells (BMSC) and osteoblasts as controls cells of the osteoblastic lineage, and evaluated its ability to form bone in vivo. Results: NUSC had proliferative and senescence rates comparable to BMSC and osteoblasts, and homogeneously expressed the osteolineage markers CD90 and CD73. Regarding CD105 and CD146 expression, NUSC were closely related to osteoblasts, both with an inferior percentage of CD105+/CD146+ cells as compared to BMSC. Despite this, NUSC differentiated along the osteogenic and adipogenic lineages in vitro; and when transplanted subcutaneously into immunocompromised mice, new bone formation and hematopoietic marrow were established. Conclusions: This study demonstrates that NUSC are osteogenically competent, supporting the hypothesis that their endogenous reactivation could be a strategy to stimulate the bone formation while reducing the amount of bone autograft requirements.
Collapse
|