1
|
Sakakura S, Inagaki E, Ochiai Y, Yamamoto M, Takai N, Nagata T, Higa K, Sato Y, Toshida H, Murat D, Hirayama M, Ogawa Y, Negishi K, Shimmura S. A Comprehensive Assessment of Tear-Film-Oriented Diagnosis (TFOD) in a Dacryoadenectomy Dry Eye Model. Int J Mol Sci 2023; 24:16510. [PMID: 38003700 PMCID: PMC10671533 DOI: 10.3390/ijms242216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Tear film instability is a major cause of dry eye disease. In order to treat patients with short tear film breakup time (TBUT)-type dry eye, the development of tear film stabilizing agents is essential. However, the lack of an appropriate animal model of tear film instability has made drug development difficult. Although rabbit dry eye models have been reported in the past, there are only a few reports that focus on tear film instability. Herein, we assessed the tear film stability of a rabbit dry eye model induced by dacryoadenectomy. A clinical evaluation of the ocular surface, interferometry, and histological assessments of the cornea and conjunctiva were performed. Following the removal of the lacrimal glands, TBUT was shortened significantly, with dimple and random breakup patterns prominently observed. Furthermore, the blink rate in this model increased after dacryoadenectomy, suggesting that this model partially captured the phenotypes of human short TBUT-type dry eye and may be useful as an animal model for investigating potential drug candidates.
Collapse
Affiliation(s)
- Saki Sakakura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yuichiro Ochiai
- Kitayama Labes Co., Ltd., 3052-1 Arai, Ina City 396-0025, Japan
| | | | - Naofumi Takai
- Kitayama Labes Co., Ltd., 3052-1 Arai, Ina City 396-0025, Japan
| | - Taeko Nagata
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
| | - Kazunari Higa
- Cornea Center and Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa 272-8513, Japan;
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Hiroshi Toshida
- Department of Ophthalmology, Juntendo University Shizuoka Hospital, Nagaoka 1129, Izunokuni City 410-2295, Japan;
| | - Dogru Murat
- Department of Ophthalmology, Tsurumi University, 2-1-3 Tsurumi, Yokohama 230-0063, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (M.H.); (K.N.)
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Haneda Innovation City Zone A, 1-1-4 Hanedakuko, Ota-ku, Tokyo 144-0041, Japan
| |
Collapse
|
2
|
Huang W, Huang L, Li W, Saglam MS, Tourmouzis K, Goldstein SM, Master A, Honkanen R, Rigas B. Once-Daily Topical Phosphosulindac Is Efficacious in the Treatment of Dry Eye Disease: Studies in Rabbit Models of Its Main Clinical Subtypes. J Ocul Pharmacol Ther 2021; 38:102-113. [PMID: 34964663 PMCID: PMC8817715 DOI: 10.1089/jop.2021.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: Dry eye disease (DED) is classified as aqueous deficient, evaporative, or mixed. We investigated the therapeutic effect of the novel anti-inflammatory drug phosphosulindac (PS) in rabbit models of DED encompassing its pathogenesis, and its transition to chronicity. Methods: We treated three rabbit models of DED with PS (hydrogel formulation) or vehicle topically applied 1 × /day. We induced aqueous-deficient DED (acute and chronic) by injecting Concanavalin A into lacrimal glands; evaporative DED by injecting into the upper eyelid inactivated Mycobacterium tuberculosis in complete Freund's adjuvant; and mixed DED through desiccative stress, induced by holding open the eye for 3 h. We determined corneal sensitivity, tear break-up time (TBUT), Schirmer's tear test (STT), tear osmolality, and fluorescein staining of the ocular surface. Results: PS reversed all abnormal DED parameters. In acute DED, PS dose dependently normalized corneal sensitivity and tear osmolality; and improved TBUT, STT, and fluorescein staining. PS normalized corneal sensitivity and improved all other parameters in chronic aqueous-deficient DED. In evaporative DED, PS normalized corneal sensitivity and improved TBUT and fluorescein staining (osmolality and STT were not significantly changed in this model). In the desiccative stress model, PS improved TBUT and fluorescein staining but had no effect on STT or tear osmolality. Conclusions: PS rapidly reversed almost all DED parameters in its three subtypes. The normalization of the suppressed corneal sensitivity suggests the possibility of marked symptomatic relief by PS. The hydrogel formulation allows once-daily dosing. PS merits further development as a potential treatment for DED.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology and Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA.,Department of Ophthalmology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqun Huang
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Wenyi Li
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - M Sait Saglam
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Adam Master
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Robert Honkanen
- Department of Ophthalmology and Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Basil Rigas
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Rahman MM, Kim DH, Park CK, Kim YH. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. Int J Mol Sci 2021; 22:12102. [PMID: 34830010 PMCID: PMC8622350 DOI: 10.3390/ijms222212102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Dry eye disease (DED) is one of the major ophthalmological healthcare challenges worldwide. DED is a multifactorial disease characterized by a loss of homeostasis of the tear film, and its main pathogenesis is chronic ocular surface inflammation related with various cellular and molecular signaling cascades. The animal model is a reliable and effective tool for understanding the various pathological mechanisms and molecular cascades in DED. Considerable experimental research has focused on developing new strategies for the prevention and treatment of DED. Several experimental models of DED have been developed, and different animal species such as rats, mice, rabbits, dogs, and primates have been used for these models. Although the basic mechanisms of DED in animals are nearly identical to those in humans, proper knowledge about the induction of animal models is necessary to obtain better and more reliable results. Various experimental models (in vitro and in vivo DED models) were briefly discussed in this review, along with pathologic features, analytical approaches, and common measurements, which will help investigators to use the appropriate cell lines, animal, methods, and evaluation parameters depending on their study design.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Dong Hyun Kim
- Gil Medical Center, Department of Ophthalmology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| |
Collapse
|
4
|
Huang W, Tourmouzis K, Perry H, Honkanen RA, Rigas B. Animal models of dry eye disease: Useful, varied and evolving (Review). Exp Ther Med 2021; 22:1394. [PMID: 34650642 PMCID: PMC8506913 DOI: 10.3892/etm.2021.10830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Dry eye disease (DED), which is a prevalent disease that still lacks successful treatment options, remains a major challenge in ophthalmology. Multiple animal models of DED have been used to decipher its pathophysiology and to develop novel treatments. These models use mice, rats, rabbits, cats, dogs and non-human primates. Each model assesses aspects of DED by focusing on elements of the lacrimal functional unit, which controls the homeostasis of the tear film. The present review outlines representative DED animal models and assesses their contribution to the study of DED. Murine models are the most extensively used, followed by rabbit models; the latter offer the advantage of larger eyes, a favorable biochemical profile for drug studies, experimental ease and relatively low cost, contrasting with non-human primates, which, although closer to humans, are not as accessible and are expensive. No comprehensive ‘ideal’ animal model encompassing all aspects of human DED exists nor is it feasible. Investigators often choose an animal model based on their experimental needs and the following four features of a given model: The size of the eye, its biochemical composition, the available research reagents and cost. As research efforts in DED expand, more refined animal models are needed to supplement the enormous contribution made to date by existing models.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | | - Henry Perry
- Ophthalomology Consultants of Long Island, Westbury, NY 11590, USA
| | - Robert A Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Basil Rigas
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Singh S, Sharma S, Basu S. Rabbit models of dry eye disease: Current understanding and unmet needs for translational research. Exp Eye Res 2021; 206:108538. [PMID: 33771517 DOI: 10.1016/j.exer.2021.108538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Dry eye disease (DED) is emerging as an eye health pandemic, affecting millions worldwide. The development of novel drugs, drug delivery systems, and targeted therapies for addressing the inflammation in DED necessitates progress in experimental models of DED. Animal models of DED have been created for simulating the two clinically described forms of DED: lacrimal insufficiency and the evaporative DED models. Although most DED models have relied upon rodents, the larger eye size and longer life span of rabbits and the closer resemblance to human lacrimal glands, render rabbits a promising near-ideal model for studying DED. Since the first rabbit DED model was described, numerous modifications including the use of topical epitheliotoxic drugs, neural abolition, activated lymphocytes injection, and surgical dacryoadenectomy have been introduced. The stability of these models, whether short-term or long-term, accordingly guides their experimental or therapeutic utility. A rabbit autoimmune dacryoadenitis model has successfully simulated DED signs and features of lacrimal gland inflammation, as observed in Sjogren's syndrome, that improved with mesenchymal stem cell therapy. This review summarizes the comparative microscopic anatomy of rabbit and human lacrimal glands, various existing rabbit DED models and their respective suitability for understanding pathogenetic mechanism of DED or for experimental drug testing. Also, the insights gained from animal models in dry eye management is described along with the future perspectives. There is still a pressing need of developing rabbit models for studying the pathogenesis of complex ocular surface changes in evaporative and aqueous deficiency DED other than autoimmune dacryoadenitis.
Collapse
Affiliation(s)
- Swati Singh
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Yu L, Bhattacharya D, Wang Z, Wang M. Topical administration of ambroxol eye drops augments tear secretion in rabbits. Graefes Arch Clin Exp Ophthalmol 2021; 259:1529-1538. [DOI: 10.1007/s00417-020-05043-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
|
7
|
Honkanen R, Huang W, Huang L, Kaplowitz K, Weissbart S, Rigas B. A New Rabbit Model of Chronic Dry Eye Disease Induced by Complete Surgical Dacryoadenectomy. Curr Eye Res 2019; 44:863-872. [PMID: 30983427 DOI: 10.1080/02713683.2019.1594933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose/Aim: Dry eye disease (DED), common and suboptimally treated, is in need of novel animal models to understand its pathophysiology and assess the efficacy and other parameters of new pharmacological agents for its treatment. The more than 10 rabbit models of DED described to date have significant limitations including induction of mild disease, lack of consistency, and off-target effects when chemical agents are used for disease induction. Our aim was to develop a new model of chronic DED in rabbits that overcomes the limitations of existing models. MATERIALS AND METHODS We performed a complete surgical resection of all orbital lacrimal glands (LGs; dacryoadenectomy) in normal adult New Zealand White rabbits. One week after removal of the nictitating membrane, we surgically removed the orbital superior LG, followed by removal of the palpebral superior LG, and finally removal of the inferior LG. Surgery was performed under anesthesia, required about 1 h/eye, and was well-tolerated. RESULTS Dacryoadenectomy induced severe DED, evidenced by >90% reduction in the tear break up time test, 50% reduction in the Schirmer tear test, 10% increase in tear osmolarity, and a marked increase in the rose bengal staining score. DED was sustained and essentially unchanged for the eight weeks of observation. Sham-operated rabbits showed no such changes, with the exception of a non-significant and transient reduction in the tear break up time test, a response to ocular surgery. CONCLUSIONS This model of stable, chronic, predominantly aqueous-deficient DED recapitulates key clinical and histological features of human DED and is suitable for the study of ocular surface homeostasis, of the pathophysiology of DED, and of the efficacy of candidate drugs for DED treatment.
Collapse
Affiliation(s)
- Robert Honkanen
- a Department of Ophthalmology, Health Sciences Center L2 , NY , USA
| | - Wei Huang
- a Department of Ophthalmology, Health Sciences Center L2 , NY , USA.,b Second Xiangya Hospital, Central South University , Hunan , China
| | - Liqun Huang
- c Department of Medicine, Health Sciences Center L17 , NY , USA.,d Medicon Pharmaceuticals, Inc, Long Island High Technology Incubator , Stony Brook , NY , USA
| | - Kevin Kaplowitz
- a Department of Ophthalmology, Health Sciences Center L2 , NY , USA
| | - Sarah Weissbart
- a Department of Ophthalmology, Health Sciences Center L2 , NY , USA
| | - Basil Rigas
- e Department of Preventive Medicine, Stony Brook University , Stony Brook , NY , USA
| |
Collapse
|
8
|
Bhattacharya D, Yu L, Wang M. Expression patterns of conjunctival mucin 5AC and aquaporin 5 in response to acute dry eye stress. PLoS One 2017; 12:e0187188. [PMID: 29112967 PMCID: PMC5675386 DOI: 10.1371/journal.pone.0187188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
The relationship between aquaporin (AQP) 5 and mucin (MUC) 5AC in the conjunctiva was investigated in response to acute dry eye (DE) stress. A mixed-mechanism rabbit DE model, in which the main lacrimal gland, Harderian gland, and nictitating membrane were resected, was further explored in this study. Conjunctival impression cytology specimens were harvested before excision (BE) and up to 3 months after excision (AE) in 8 (16 eyes) male New Zealand White rabbits, and immunoblotting was employed to assess the expression of AQP5 and MUC5AC. It was observed that AQP5 and MUC5AC showed a positive, synchronous expression pattern with progressive upregulation at protein level up to 2 months AE. At 3 months, the expression of both proteins decreased, but was still higher than that of BE. Such a synchronous relationship was further observed in mouse conjunctiva epithelium primary cells under hyperosmotic condition. Moreover, the co-immunoprecipitation of AQP5 and MUC5AC suggested a possible physical interaction between the two molecules. Our data indicates that conjunctival AQP5 and MUC5AC act synchronously in response to acute DE stress.
Collapse
Affiliation(s)
- Dhruva Bhattacharya
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Li Yu
- Shenzhen Key Laboratory of Ophthalmology, Jinan University Shenzhen Eye Hospital, Shenzhen, Guangdong, PR China
- Shenzhen Ocular Trauma and Stem Cell Differentiation Service, Shenzhen, Guangdong, PR China
- Shenzhen University College of Optometry, Shenzhen, Guangdong, PR China
| | - Mingwu Wang
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
- NeuVision Medical Institute, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
9
|
Felix CM, Lee S, Levin MH, Verkman AS. Pro-Secretory Activity and Pharmacology in Rabbits of an Aminophenyl-1,3,5-Triazine CFTR Activator for Dry Eye Disorders. Invest Ophthalmol Vis Sci 2017; 58:4506-4513. [PMID: 28873176 PMCID: PMC5584707 DOI: 10.1167/iovs.17-22525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose Pharmacological activation of ocular surface cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels is a potential pro-secretory approach to treat dry eye disorders. We previously reported the discovery of aminophenyl-1,3,5-triazines, one of which, N-methyl-N-phenyl-6-(2,2,3,3-tetrafluoropropoxy)-1,3,5-triazine-2,4-diamine (herein called CFTRact-K267), fully activated human wildtype CFTR with EC50 ∼ 30 nM and increased tear volume for 8 hours in mice. Here, functional and pharmacological studies of CFTRact-K267 were done in adult New Zealand white rabbits. Methods CFTR chloride conductance was measured in vivo by ocular surface potential differences and in ex vivo conjunctiva by short-circuit current. Tear volume was measured by the Schirmer tear test II and CFTRact-K267 pharmacokinetics and tissue distribution by liquid chromatography/mass spectrometry. Toxicity profile was studied for 28 days with twice-daily topical administration. Results Electrophysiological measurements in vivo and in ex vivo conjunctiva demonstrated CFTR activation by CFTRact-K267. A single topical dose of 3 nmol CFTRact-K267 increased tear production by >5 mm for 9 hours by the Schirmer tear test, with predicted therapeutic concentrations maintained in tear fluid. No tachyphylaxis was seen following 28-day twice-daily administration, and changes were not observed in corneal surface integrity or thickness, intraocular pressure, or ocular histology. At day 28, CFTRact-K267 was concentrated in the cornea and conjunctiva and was not detectable in blood or peripheral organs. Conclusions These studies support the development of CFTRact-K267 as a pro-secretory therapy for dry eye disorders.
Collapse
Affiliation(s)
- Christian M Felix
- Departments of Medicine and Physiology, University of California, San Francisco, California, United States
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco, California, United States
| | - Marc H Levin
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, California, United States
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, California, United States
| |
Collapse
|
10
|
Estlack Z, Bennet D, Reid T, Kim J. Microengineered biomimetic ocular models for ophthalmological drug development. LAB ON A CHIP 2017; 17:1539-1551. [PMID: 28401229 DOI: 10.1039/c7lc00112f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current ophthalmological drug discovery and testing methods have limitations and concerns regarding reliability, ethicality, and applicability. These drawbacks can be mitigated by developing biomimetic eye models through mathematical and experimental methods which are often referred to as "eye-on-a-chip" or "eye chip". These eye chip technologies emulate ocular physiology, anatomy, and microenvironmental conditions. Such models enable understanding of the fundamental biology, pharmacology, and toxicology mechanisms by investigating the pharmacokinetics and pharmacodynamics of various candidate drugs under ocular anatomical and physiological conditions without animal models. This review provides a comprehensive overview of the latest advances in theoretical and in vitro experimental models of the anterior segment of the eye and its microenvironment, including eye motions and tear film dynamics. The current state of ocular modeling and simulation from predictive models to experimental models is discussed in detail with their advantages and limitations. The potential for future eye chip models to expedite new ophthalmic drug discoveries is also discussed.
Collapse
Affiliation(s)
- Zachary Estlack
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | |
Collapse
|