1
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
2
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 PMCID: PMC11921889 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Zhou Y, Yan A, Yang J, He W, Guo S, Li Y, Wu J, Dai Y, Pan X, Cui D, Pereira O, Teng W, Bi R, Chen S, Fan L, Wang P, Liao Y, Qin W, Sui SF, Zhu Y, Zhang C, Liu Z. Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans. Front Microbiol 2024; 15:1367658. [PMID: 38737410 PMCID: PMC11082331 DOI: 10.3389/fmicb.2024.1367658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.
Collapse
Affiliation(s)
- Yangkai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An Yan
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiawen Yang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuai Guo
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanchao Dai
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Olivier Pereira
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institut AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenkai Teng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ran Bi
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan Liao
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Sen-Fang Sui
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
- Advanced Institute for Ocean Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Gorlas A, Mariotte T, Morey L, Truong C, Bernard S, Guigner JM, Oberto J, Baudin F, Landrot G, Baya C, Le Pape P, Morin G, Forterre P, Guyot F. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments? Environ Microbiol 2022; 24:626-642. [PMID: 35102700 PMCID: PMC9306673 DOI: 10.1111/1462-2920.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Thermococcales, a major order of archaea inhabiting the iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, have been shown to rapidly produce abundant quantities of pyrite FeS2 in iron-sulfur-rich fluids at 85°C, suggesting that they may contribute to the formation of 'low temperature' FeS2 in their ecosystem. We show that this process operates in Thermococcus kodakarensis only when zero-valent sulfur is directly available as intracellular sulfur vesicles. Whether in the presence or absence of zero-valent sulfur, significant amounts of Fe3 S4 greigite nanocrystals are formed extracellularly. We also show that mineralization of iron sulfides induces massive cell mortality but that concomitantly with the formation of greigite and/or pyrite, a new generation of cells can grow. This phenomenon is observed for Fe concentrations of 5 mM but not higher suggesting that above a threshold in the iron pulse all cells are lysed. We hypothesize that iron sulfides precipitation on former cell materials might induce the release of nutrients in the mineralization medium further used by a fraction of surviving non-mineralized cells allowing production of new alive cells. This suggests that biologically induced mineralization of iron-sulfides could be part of a survival strategy employed by Thermococcales to cope with mineralizing high-temperature hydrothermal environments.
Collapse
Affiliation(s)
- A Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - T Mariotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - L Morey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - C Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J-M Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Baudin
- Institut des Sciences de la Terre de Paris, UMR 7193 - Sorbonne Université - CNRS, Paris, 75005, France
| | - G Landrot
- Synchrotron SOLEIL - SAMBA beamline, Saint-Aubin, 91190, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - G Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Vogt MS, Ngouoko Nguepbeu RR, Mohr MKF, Albers SV, Essen LO, Banerjee A. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family. J Biol Chem 2021; 297:100820. [PMID: 34029589 PMCID: PMC8233210 DOI: 10.1016/j.jbc.2021.100820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022] Open
Abstract
CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3′,5′-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network–based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.
Collapse
Affiliation(s)
- Marian S Vogt
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | - Michael K F Mohr
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
| | - Ankan Banerjee
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Department of Genetics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Welte CU, de Graaf R, Dalcin Martins P, Jansen RS, Jetten MSM, Kurth JM. A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus. Environ Microbiol 2021; 23:4017-4033. [PMID: 33913565 PMCID: PMC8359953 DOI: 10.1111/1462-2920.15546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Methoxylated aromatic compounds (MACs) are important components of lignin found in significant amounts in the subsurface. Recently, the methanogenic archaeon Methermicoccus shengliensis was shown to be able to use a variety of MACs during methoxydotrophic growth. After a molecular survey, we found that the hyperthermophilic non‐methanogenic archaeon Archaeoglobus fulgidus also encodes genes for a bacterial‐like demethoxylation system. In this study, we performed growth and metabolite analysis, and used transcriptomics to investigate the response of A. fulgidus during growth on MACs in comparison to growth on lactate. We observed that A. fulgidus converts MACs to their hydroxylated derivatives with CO2 as the main product and sulfate as electron acceptor. Furthermore, we could show that MACs improve the growth of A. fulgidus in the presence of organic substrates such as lactate. We also found evidence that other archaea such as Bathyarchaeota, Lokiarchaeota, Verstraetearchaeota, Korarchaeota, Helarchaeota and Nezhaarchaeota encode a demethoxylation system. In summary, we here describe the first non‐methanogenic archaeon with the ability to grow on MACs indicating that methoxydotrophic archaea might play a so far underestimated role in the global carbon cycle.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Rob de Graaf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
7
|
Paula FS, Chin JP, Schnürer A, Müller B, Manesiotis P, Waters N, Macintosh KA, Quinn JP, Connolly J, Abram F, McGrath JW, O'Flaherty V. The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Sci Rep 2019; 9:17101. [PMID: 31745137 PMCID: PMC6864096 DOI: 10.1038/s41598-019-53168-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic polyphosphate (polyP) is ubiquitous across all forms of life, but the study of its metabolism has been mainly confined to bacteria and yeasts. Few reports detail the presence and accumulation of polyP in Archaea, and little information is available on its functions and regulation. Here, we report that homologs of bacterial polyP metabolism proteins are present across the major taxa in the Archaea, suggesting that archaeal populations may have a greater contribution to global phosphorus cycling than has previously been recognised. We also demonstrate that polyP accumulation can be induced under strictly anaerobic conditions, in response to changes in phosphate (Pi) availability, i.e. Pi starvation, followed by incubation in Pi replete media (overplus), in cells of the methanogenic archaeon Methanosarcina mazei. Pi-starved M. mazei cells increased transcript abundance of the alkaline phosphatase (phoA) gene and of the high-affinity phosphate transport (pstSCAB-phoU) operon: no increase in polyphosphate kinase 1 (ppk1) transcript abundance was observed. Subsequent incubation of Pi-starved M. mazei cells under Pi replete conditions, led to a 237% increase in intracellular polyphosphate content and a > 5.7-fold increase in ppk1 gene transcripts. Ppk1 expression in M. mazei thus appears not to be under classical phosphate starvation control.
Collapse
Affiliation(s)
- Fabiana S Paula
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jason P Chin
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Nicholas Waters
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| | - Katrina A Macintosh
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - John P Quinn
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Jasmine Connolly
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - Florence Abram
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
| |
Collapse
|
8
|
Jasso-Chávez R, Lira-Silva E, González-Sánchez K, Larios-Serrato V, Mendoza-Monzoy DL, Pérez-Villatoro F, Morett E, Vega-Segura A, Torres-Márquez ME, Zepeda-Rodríguez A, Moreno-Sánchez R. Marine Archaeon Methanosarcina acetivorans Enhances Polyphosphate Metabolism Under Persistent Cadmium Stress. Front Microbiol 2019; 10:2432. [PMID: 31708902 PMCID: PMC6821655 DOI: 10.3389/fmicb.2019.02432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/09/2019] [Indexed: 12/04/2022] Open
Abstract
Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.
Collapse
Affiliation(s)
- Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Elizabeth Lira-Silva
- Departamento de Farmacología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | - Fernando Pérez-Villatoro
- Winter Genomics, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Enrique Morett
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
9
|
Wang L, Liu Q, Wu X, Huang Y, Wise MJ, Liu Z, Wang W, Hu J, Wang C. Bioinformatics Analysis of Metabolism Pathways of Archaeal Energy Reserves. Sci Rep 2019; 9:1034. [PMID: 30705313 PMCID: PMC6355812 DOI: 10.1038/s41598-018-37768-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 11/08/2022] Open
Abstract
Energy storage compounds play crucial roles in prokaryotic physiology. Five chemical compounds have been identified in prokaryotes as energy reserves: polyphosphate (polyP), polyhydroxyalkanoates (PHAs), glycogen, wax ester (WE) and triacylglycerol (TAG). Currently, no systematic study of archaeal energy storage metabolism exists. In this study, we collected 427 archaeal reference sequences from UniProt database. A thorough pathway screening of energy reserves led to an overview of distribution patterns of energy metabolism in archaea. We also explored how energy metabolism might have impact on archaeal extremophilic phenotypes. Based on the systematic analyses of archaeal proteomes, we confirmed that metabolism pathways of polyP, PHAs and glycogen are present in archaea, but TAG and WE are completely absent. It was also confirmed that PHAs are tightly related to halophilic archaea with larger proteome size and higher GC contents, while polyP is mainly present in methanogens. In sum, this study systematically investigates energy storage metabolism in archaea and provides a clear correlation between energy metabolism and the ability to survive in extreme environments. With more genomic editing tools developed for archaea and molecular mechanisms unravelled for energy storage metabolisms (ESMs), there will be a better understanding of the unique lifestyle of archaea in extreme environments.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Huang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Michael J Wise
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Department of Computer Science and Software Engineering, School of Physics, Mathematics and Computing, University of Western Australia, Perth, Western Australia, Australia
| | - Zhanzhong Liu
- Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Public Health, Capital Medical University, Beijing, China
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Junfeng Hu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Computer Science, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunying Wang
- Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|