1
|
Liu P, An Y, Zhu T, Tang S, Huang X, Li S, Fu F, Chen J, Xuan K. Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy. Front Cell Infect Microbiol 2023; 13:1131218. [PMID: 36968100 PMCID: PMC10034133 DOI: 10.3389/fcimb.2023.1131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.
Collapse
Affiliation(s)
- Peisheng Liu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongqian An
- Department of Stomatology, 962 Hospital of People's Liberation Army of China, Harbin, Heilongjiang, China
| | - Ting Zhu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siyuan Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| |
Collapse
|
2
|
Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation. Stem Cell Res Ther 2017; 8:15. [PMID: 28129796 PMCID: PMC5273806 DOI: 10.1186/s13287-017-0484-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/03/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Background Metabolic plasticity and the versatility of different lineages of stem cells as they satisfy their energy demands are not completely understood. In this study we investigated the metabolic changes in mesenchymal stem cells (MSCs) undergoing differentiation in two directions, osteogenic and chondrogenic, using two-photon fluorescence microscopy combined with FLIM. Methods Differentiation was induced by incubating the human bone marrow MSCs in osteogenic or chondrogenic mediums. Cellular metabolism was examined on the basis of the fluorescence of the metabolic cofactors NAD(P)H and FAD. The optical redox ratio (FAD/NAD(P)H) and the fluorescence lifetimes of NAD(P)H and FAD were traced using two-photon fluorescence microscopy combined with FLIM. The cells were imaged before the induction of differentiation (day 0) and on days 7, 14, and 21 of osteogenic and chondrogenic differentiation. Results Based on the data for the FAD/NAD(P)H redox ratio and on the fluorescence lifetimes of protein-bound NAD(P)H, we registered a metabolic shift toward a more glycolytic status in the process of MSC differentiation. The difference was that, in osteogenic differentiation, an increase in oxidative phosphorylation preceded the shift to the glycolytic status in the process of such MSC differentiation. The fluorescence lifetime characteristics of FAD indicated the stimulation of an unknown metabolic pathway, where protein-bound FAD participates. Conclusions In this study, probing of the metabolic status of MSCs during osteogenic and chondrogenic differentiation was implemented for the first time with the use of optical metabolic imaging of the two cofactors - NAD(P)H and FAD. Our data suggest that biosynthetic processes, associated, presumably, with the synthesis of collagen, drive energy metabolism in differentiating cells, and promote a metabolic shift from a more oxidative to a more glycolytic state.
Collapse
|