1
|
Sayem SAJ, Lee GY, Abbas MA, Park SC, Lee SJ. Pharmacodynamic Profiling of Amoxicillin: Targeting Multidrug-Resistant Gram-Positive Pathogens Staphylococcus aureus and Staphylococcus pseudintermedius in Canine Clinical Isolates. Antibiotics (Basel) 2025; 14:99. [PMID: 39858384 PMCID: PMC11761891 DOI: 10.3390/antibiotics14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The rising threat of antimicrobial resistance (AMR) is a global concern in both human and veterinary medicine, with multidrug-resistant (MDR) pathogens such as Staphylococcus aureus and Staphylococcus pseudintermedius presenting significant challenges. Background/Objectives: This study evaluates the effectiveness of amoxicillin against these MDR pathogens in canine isolates using pharmacokinetic and pharmacodynamic parameters. Methods: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and mutation prevention concentration (MPC) were assessed. Additionally, time-kill assays and post-antibiotic effect (PAE) assessments were performed. Epidemiological cutoff (ECOFF) values were established for both species to guide therapy. Results: S. aureus had a higher resistance rate (35.89%) than S. pseudintermedius (15.27%), with MIC50 values of 0.50 μg/mL and 0.25 μg/mL, respectively. The MPC analysis revealed that S. pseudintermedius required higher antibiotic concentrations (16.11 μg/mL) to prevent mutations compared to S. aureus (2.20 μg/mL). Time-kill assays indicated that higher amoxicillin dosages caused faster bacterial reduction. The PAE analysis showed extended post-treatment bacterial suppression at elevated doses, particularly against S. aureus. Conclusions: Species-specific amoxicillin dosing strategies are necessary due to differing resistance and susceptibility profiles between S. aureus and S. pseudintermedius. High-dose amoxicillin therapy is recommended to achieve optimal therapeutic outcomes for resistant SA, while slightly adjusted dosing can manage S. pseudintermedius infections. These findings provide essential insights for veterinary antimicrobial stewardship, underscoring the need for tailored therapeutic approaches to minimize AMR development while ensuring effective infection control.
Collapse
Affiliation(s)
- Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.J.S.); (G.-Y.L.); (M.A.A.)
| | - Ga-Yeong Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.J.S.); (G.-Y.L.); (M.A.A.)
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.J.S.); (G.-Y.L.); (M.A.A.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.J.S.); (G.-Y.L.); (M.A.A.)
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Blondeau JM, Fitch SD. Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Molecules 2024; 29:5448. [PMID: 39598838 PMCID: PMC11597606 DOI: 10.3390/molecules29225448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Pradofloxacin is a dual targeting, bactericidal fluoroquinolone recently approved for treating bacteria causing swine respiratory disease. Currently, an abundance of in vitro data does not exist for pradofloxacin. We determined the minimum inhibitory concentration (MIC) and mutant prevention concentrations (MPC) of pradofloxacin compared to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin against swine isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Overall, pradofloxacin had the lowest MIC and MPC values as compared to the other agents tested. For example, pradofloxacin MIC values for 50%, 90% and 100% of A. pleuropneumoniae strains were ≤0.016 µg/mL, ≤0.016 µg/mL and ≤0.016 µg/mL and for P. multocida were ≤0.016 µg/mL, ≤0.016 µg/mL and 0.031 µg/mL, respectively. The MPC values for 50%, 90% and 100% of A. pleuropneumoniae strains were 0.031 µg/mL, 0.063 µg/mL and 0.125 µg/mL and for P. multocida were ≤0.016 µg/mL, 0.031 µg/mL and 0.0.063 µg/mL, respectively. By MPC testing, all strains were at or below the susceptibility breakpoint. Based on MPC testing, pradofloxacin appears to have a low likelihood for resistance selection. This study represents the most comprehensive in vitro comparison of the above noted drugs and the first report for pradofloxacin and tildipirosin.
Collapse
Affiliation(s)
- Joseph M. Blondeau
- Departments of Biochemistry, Microbiology and Immunology, Pathology and Laboratory Medicine and Ophthalmology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
| | - Shantelle D. Fitch
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
3
|
Majidifar S, Zabihian A, Hooshmand M. Combination therapy synergism prediction for virus treatment using machine learning models. PLoS One 2024; 19:e0309733. [PMID: 39231124 PMCID: PMC11373828 DOI: 10.1371/journal.pone.0309733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Combining different drugs synergistically is an essential aspect of developing effective treatments. Although there is a plethora of research on computational prediction for new combination therapies, there is limited to no research on combination therapies in the treatment of viral diseases. This paper proposes AI-based models for predicting novel antiviral combinations to treat virus diseases synergistically. To do this, we assembled a comprehensive dataset comprising information on viral strains, drug compounds, and their known interactions. As far as we know, this is the first dataset and learning model on combination therapy for viruses. Our proposal includes using a random forest model, an SVM model, and a deep model to train viral combination therapy. The machine learning models showed the highest performance, and the predicted values were validated by a t-test, indicating the effectiveness of the proposed methods. One of the predicted combinations of acyclovir and ribavirin has been experimentally confirmed to have a synergistic antiviral effect against herpes simplex type-1 virus, as described in the literature.
Collapse
Affiliation(s)
- Shayan Majidifar
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Arash Zabihian
- Department of QA, Kimia Zist Parsian Pharmaceutical Company, Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
4
|
Blondeau JM, Fitch SD. Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida. Pathogens 2024; 13:399. [PMID: 38787251 PMCID: PMC11123865 DOI: 10.3390/pathogens13050399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Pradofloxacin-a dual-targeting fluoroquinolone-is the most recent approved for use in food animals. Minimum inhibitory and mutant prevention concentration values were determined for pradofloxacin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin. For M. haemolytica strains, MIC50/90/100 values were ≤0.016/≤0.016/≤0.016 and MPC50/90/100 values were 0.031/0.063/0.063; for P. multocida strains, the MIC50/90/100 values ≤0.016/≤0.016/0.031 and MPC50/90/100 ≤ 0.016/0.031/0.063 for pradofloxacin. The pradofloxacin Cmax/MIC90 and Cmax/MPC90 values for M. haemolytica and P. multocida strains, respectively, were 212.5 and 53.9 and 212.5 and 109.7. Similarly, AUC24/MIC90 and AUC24/MPC90 for M. haemolytica were 825 and 209.5, and for P. multocida, they were 825 and 425.8. Pradofloxacin would exceed the mutant selection window for >12-16 h. Pradofloxacin appears to have a low likelihood for resistance selection against key bovine respiratory disease bacterial pathogens based on low MIC and MPC values.
Collapse
Affiliation(s)
- Joseph M. Blondeau
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
- Department of Biochemistry, Microbiology and Immunology, Pathology and Laboratory Medicine and Ophthalmology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Shantelle D. Fitch
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
5
|
Ren J, Zhang QW, He XJ, Chen XY, Zhou ZD, Zeng ZL, Jin Z, Tang YZ. Design, synthesis, biological evaluation and molecular docking study of novel pleuromutilin derivatives containing substituted benzoxazole as antibacterial agents. J Enzyme Inhib Med Chem 2023; 38:2251712. [PMID: 37664987 PMCID: PMC10478630 DOI: 10.1080/14756366.2023.2251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
A series of pleuromutilin analogs containing substituted benzoxazole were designed, synthesised, and assessed for their antibacterial activity both in vivo and in vitro. The MIC of the synthesised derivatives was initially assessed using the broth dilution method against four strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3 and S. aureus 144). Most of the synthesised derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). Compounds 50 and 57 exhibited the most effective antibacterial effect against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed that compounds 50 and 57 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 50 was evaluated further using a murine thigh model infected with MRSA (-1.24 log10CFU/mL). Compound 50 exhibited superior antibacterial efficacy to tiamulin. It was also found that compound 50 did not display significant inhibitory effect on the proliferation of RAW 264.7 cells. Molecular docking study revealed that compound 50 can effectively bind to the active site of the 50S ribosome (the binding free energy -7.50 kcal/mol).
Collapse
Affiliation(s)
- Jie Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi-Wen Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xian-Jin He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ying Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Mi K, Sun L, Hou Y, Cai X, Zhou K, Ma W, Xu X, Pan Y, Liu Z, Huang L. A physiologically based pharmacokinetic model to optimize the dosage regimen and withdrawal time of cefquinome in pigs. PLoS Comput Biol 2023; 19:e1011331. [PMID: 37585381 PMCID: PMC10431683 DOI: 10.1371/journal.pcbi.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Cefquinome is widely used to treat respiratory tract diseases of swine. While extra-label dosages of cefquinome could improve clinical efficacy, they might lead to excessively high residues in animal-derived food. In this study, a physiologically based pharmacokinetic (PBPK) model was calibrated based on the published data and a microdialysis experiment to assess the dosage efficiency and food safety. For the microdialysis experiment, in vitro/in vivo relative recovery and concentration-time curves of cefquinome in the lung interstitium were investigated. This PBPK model is available to predict the drug concentrations in the muscle, kidney, liver, plasma, and lung interstitial fluid. Concentration-time curves of 1000 virtual animals in different tissues were simulated by applying sensitivity and Monte Carlo analyses. By integrating pharmacokinetic/pharmacodynamic target parameters, cefquinome delivered at 3-5 mg/kg twice daily is advised for the effective control of respiratory tract infections of nursery pig, which the bodyweight is around 25 kg. Based on the predicted cefquinome concentrations in edible tissues, the withdrawal interval is 2 and 3 days for label and the extra-label doses, respectively. This study provides a useful tool to optimize the dosage regimen of cefquinome against respiratory tract infections and predicts the concentration of cefquinome residues in edible tissues. This information would be helpful to improve the food safety and guide rational drug usage.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
| | - Yixuan Hou
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xin Cai
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Wenjin Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangyue Xu
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Yuanhu Pan
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Somogyi Z, Mag P, Simon R, Kerek Á, Szabó P, Albert E, Biksi I, Jerzsele Á. Pharmacokinetics and Pharmacodynamics of Florfenicol in Plasma and Synovial Fluid of Pigs at a Dose of 30 mg/kg bw Following Intramuscular Administration. Antibiotics (Basel) 2023; 12:antibiotics12040758. [PMID: 37107120 PMCID: PMC10135420 DOI: 10.3390/antibiotics12040758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A major problem of our time is the ever-increasing resistance to antimicrobial agents in bacterial populations. One of the most effective ways to prevent these problems is to target antibacterial therapies for specific diseases. In this study, we investigated the in vitro effectiveness of florfenicol against S. suis, which can cause severe arthritis and septicemia in swine herds. The pharmacokinetic and pharmacodynamic properties of florfenicol in porcine plasma and synovial fluid were determined. After a single intramuscular administration of florfenicol at 30 mg/kgbw, the AUC0-∞ was 164.45 ± 34.18 µg/mL × h and the maximum plasma concentration was 8.15 ± 3.11 µg/mL, which was reached in 1.40 ± 0.66 h, whereas, in the synovial fluid, these values were 64.57 ± 30.37 µg/mL × h, 4.51 ± 1.16 µg/mL and 1.75 ± 1.16 h, respectively. Based on the MIC values of the 73 S. suis isolates tested, the MIC50 and MIC90 values were 2 µg/mL and 8 µg/mL, respectively. We successfully implemented a killing-time curve in pig synovial fluid as a matrix. Based on our findings, the PK/PD breakpoints of the bacteriostatic (E = 0), bactericidal (E = -3) and eradication (E = -4) effects of florfenicol were determined and MIC thresholds were calculated, which are the guiding indicators for the treatment of these diseases. The AUC24h/MIC values for bacteriostatic, bactericidal and eradication effects were 22.22 h, 76.88 h and 141.74 h, respectively, in synovial fluid, and 22.42 h, 86.49 h and 161.76 h, respectively, in plasma. The critical MIC values of florfenicol against S. suis regarding bacteriostatic, bactericidal and eradication effects in pig synovial fluid were 2.91 ± 1.37 µg/mL, 0.84 ± 0.39 µg/mL and 0.46 ± 0.21 µg/mL, respectively. These values provide a basis for further studies on the use of florfenicol. Furthermore, our research highlights the importance of investigating the pharmacokinetic properties of antibacterial agents at the site of infection and the pharmacodynamic properties of these agents against different bacteria in different media.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Pál Szabó
- Research Center for Natural Sciences, Center for Structural Study, MS Metabolomics Laboratory, 1117 Budapest, Hungary
| | - Ervin Albert
- Department of Pathology, University of Veterinary Medicine Budapest, 2225 Üllő, Hungary
- SCG Diagnostics Ltd., 2437 Délegyháza, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine Budapest, 2225 Üllő, Hungary
- SCG Diagnostics Ltd., 2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
8
|
The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model. PLoS One 2023; 18:e0278306. [PMID: 36696421 PMCID: PMC9876276 DOI: 10.1371/journal.pone.0278306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 01/26/2023] Open
Abstract
Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis in animals. In this study, we evaluated the associations between the specific pharmacokinetics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose of cefquinome (30, 60, 120, and 240 μg/mammary gland), the concentration of cefquinome in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/MS-MS). The PK parameters were calculated using a one-compartment first-order absorption model. Antibacterial activity was defined as the maximum change in the S. agalactiae population after each dose. An inhibitory sigmoid Emax model was used to evaluate the relationships between the PK/PD index values and antibacterial effects. The duration for which the concentration of the antibiotic (%T) remained above the minimum inhibitory concentration (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The values of %T > MIC to reach 0.5-log10CFU/MG, 1-log10 CFU/MG and 2-log10 CFU/MG reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefquinome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-log10. These findings provide a valuable understanding to optimise the dose regimens of cefquinome in the treatment of S. agalactiae infections.
Collapse
|
9
|
Zhou J, Lin Y, Liu Y, Chen K. Antibiotic exposure and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65052-65061. [PMID: 34622400 DOI: 10.1007/s11356-021-16781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To investigate the association between antibiotic exposure and risk of type 2 diabetes mellitus (T2DM). Four electronic databases, including PubMed, MEDLINE, EMBASE, and Cochrane Library, were searched for all relevant studies, from inception until May 2021, without restrictions. Pooled odds risk (OR) with 95% confidence intervals (CI) was applied to evaluate the effect value. Nine studies counting a total of 3,924,272 participants were assessed in the systematic review and meta-analyses. By meta-analysis using no antibiotic exposure as the reference, antibiotic exposure has a higher risk for T2DM (OR=1.16; 95% CI, 1.10-1.22). Subgroup analyses suggested that the antibiotic exposure could significantly enhance the risk of T2DM in those whose age were more than 50 (OR=1.17; 95% CI, 1.08-1.25). Further stratified analysis indicated that the association was likely attributed to the chemical structure of antibiotics, but not to antibacterial type and mechanism of action. Our results may further support the possibility that antibiotic use in recent years was associated with increased risk of T2DM. More attentions and cautions should be taken by the physicians when prescribing antibiotics.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yong Liu
- AIER Hefei eye hospital affiliated to Anhui Medical University, Anhui, Hefei, China.
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
PK/PD Analysis by Nonlinear Mixed-Effects Modeling of a Marbofloxacin Dose Regimen for Treatment of Goat Mastitis Produced by Coagulase-Negative Staphylococci. Animals (Basel) 2021; 11:ani11113098. [PMID: 34827830 PMCID: PMC8614466 DOI: 10.3390/ani11113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Coagulase-negative staphylococci are main pathogens that produce goat mastitis. Marbofloxacin is a third-generation fluoroquinolone approved to treat mastitis in animals. Since the efficacy of an antimicrobial is related with its concentration in the site of infection, and the latter depends of dose and biological processes that determine the distribution of the antimicrobial in different tissues and secretions, the objectives of this study were to evaluate the efficacy of a dose regimen of marbofloxacin (10 mg/kg/24 h) administered intramuscularly for five days in goats with mastitis induced by coagulase-negative staphylococci, by an evaluation of the concentrations of marbofloxacin achieved in blood and milk over time (called pharmacokinetics), and characterizing the concentration–effect relationship of marbofloxacin against coagulase-negative staphylococci in Mueller Hinton broth and goat milk, by time kill assays, in order to determine the concentrations of marbofloxacin related with an adequate bacterial count reduction (measured by efficacy index AUC/MIC). The proposed dose regimen was adequate for the treatment of goat mastitis produced by coagulase-negative staphylococci, resulting in a microbiological and clinical cure of all animals. The animal model used in this study provided important pharmacokinetic information about the effect of the infection on the pharmacokinetics of marbofloxacin. Pharmacodynamic modeling showed that marbofloxacin concentrations needed for antimicrobial efficacy were higher in goat milk compared with Mueller Hinton broth. Bacterial resistance to antimicrobials is a serious problem, since marbofloxacin is considered a critically important antimicrobial, and its rational and prudent use could extend its utility over time. Abstract Coagulase-negative staphylococci are main pathogens that produce goat mastitis. Marbofloxacin is a third-generation fluoroquinolone approved for treat mastitis in animals. The objectives of this study were: (i) to determine the pharmacokinetics of marbofloxacin (10 mg/kg/24 h) in serum and milk administered intramuscularly for five days in goats with mastitis induced by coagulase-negative staphylococci; (ii) to characterize the concentration–effect relationship of marbofloxacin against coagulase-negative staphylococci in Mueller Hinton broth and goat milk; (iii) to determine AUC/MIC cutoff values of marbofloxacin, and (iv) to perform a PK/PD analysis to evaluate the efficacy of the dose regimen for the treatment of goat mastitis produced by coagulase-negative staphylococci. Marbofloxacin presented context-sensitive pharmacokinetics, influenced by the evolution of the disease, which decreased marbofloxacin disposition in serum and milk. Marbofloxacin showed a median (95% CI) fAUC/MIC values for MIC of 0.4 and 0.8 µg/mL of 26.66 (22.26–36.64) and 32.28 (26.57–48.35) related with −2 log10CFU/mL reduction; and 32.26 (24.81–81.50) and 41.39 (29.38–128.01) for −3 log10CFU/mL reduction in Mueller Hinton broth. For milk, −2 log10CFU/mL reduction was achieved with 41.48 (35.29–58.73) and 51.91 (39.09–131.63), and −3 log10CFU/mL reduction with 51.04 (41.6–82.1) and 65.65 (46.68–210.16). The proposed dose regimen was adequate for the treatment of goat mastitis produced by coagulase-negative staphylococci, resulting in microbiological and clinical cure of all animals. The animal model used in this study provided important pharmacokinetic information about the effect of the infection on the pharmacokinetics of marbofloxacin. Pharmacodynamic modeling showed that fAUC/MIC cutoff values were higher in goat milk compared with Mueller Hinton broth.
Collapse
|
11
|
Huang A, Wang S, Guo J, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Yuan Z, Hao H. Prudent Use of Tylosin for Treatment of Mycoplasma gallisepticum Based on Its Clinical Breakpoint and Lung Microbiota Shift. Front Microbiol 2021; 12:712473. [PMID: 34566919 PMCID: PMC8458857 DOI: 10.3389/fmicb.2021.712473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore the prudent use of tylosin for the treatment of chronic respiratory infectious diseases in chickens caused by Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and its effect on lung microbiota. The CBP was established based on the wild-type/epidemiological cutoff value (COWT/ECV), pharmacokinetics-pharmacodynamics (PK-PD) cutoff value (COPD), and clinical cutoff value (COCL) of tylosin against MG. The minimum inhibitory concentration (MIC) of tylosin against 111 MG isolates was analyzed and the COWT was 2 μg/ml. M17 with MIC of 2 μg/ml was selected as a representative strain for the PK-PD study. The COPD of tylosin against MG was 1 μg/ml. The dosage regimen formulated by the PK-PD study was 3 days administration of tylosin at a dose of 45.88 mg/kg b.w. with a 24-h interval. Five different MIC MGs were selected for clinical trial, and the COCL of tylosin against MG was 0.5 μg/ml. According to the CLSI decision tree, the CBP of tylosin against MG was set up as 2 μg/ml. The effect of tylosin on lung microbiota of MG-infected chickens was analyzed by 16S rRNA gene sequencing. Significant change of the lung microbiota was observed in the infection group and treatment group based on the principal coordinate analysis and the Venn diagrams of the core and unique OTU. The phyla Firmicutes and Proteobacteria showed difference after MG infection and treatment. This study established the CBP of tylosin against MG. It also provided scientific data for the prudent use of tylosin based on the evaluation of MG infection and tylosin treatment on the lung microbiota.
Collapse
Affiliation(s)
- Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Shuge Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinli Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Wang F, Luo W, Pan Y, Qu W, Xie S, Huang L, Wang Y. Antibacterial activity of combined aditoprim and sulfamethoxazole against Escherichia coli from swine and a dose regimen based on pharmacokinetic-pharmacodynamic modeling. J Vet Pharmacol Ther 2021; 45:133-145. [PMID: 34435681 DOI: 10.1111/jvp.13006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022]
Abstract
The mortality of livestock caused by pathogenic Escherichia coli (E. coli) still accounts for a large proportion of deaths in large-scale production and reproduction, which causes devastating economic losses to the pig breeding industry. The aims of this study were to investigate the antibacterial activity of combined aditoprim (ADP) and sulfamethoxazole (SMZ) against clinical isolates of E. coli from pigs and to develop a pharmacokinetic-pharmacodynamic (PK-PD) model to formulate the optimal dose of ADP/SMZ for the treatment of pig colibacillosis. Blood and ileum fluid samples were collected at different times after single intramuscular injection of ADP/SMZ (5/25 mg/kg b.w.) to healthy pigs and E. coli-infected pigs. Concentrations of ADP and SMZ in plasma and ileum fluid were analyzed by HPLC. The peak concentration (Cmax ) and the area under the concentration-time curve (AUC0-24h ) in ileum fluid of healthy pigs were 1.76 ± 0.27 µg/ml and 18.92 ± 2.87 µg·h/ml for ADP and 19.15 ± 2.63 µg/ml and 125.70 ± 11.86 µg·h/ml for SMZ, respectively. Cmax and AUC0-24h in ileum fluid of infected pigs were 1.88 ± 0.13 µg/ml and 15.12 ± 0.75 µg·h/ml for ADP and 19.71 ± 3.68 µg/ml and 133.92 ± 17.14 µg·h/ml for SMZ, respectively. The minimum inhibitory concentrations (MICs) of combined ADP and SMZ (ADP/SMZ) against 185 strains of E. coli from pigs were determined. The MIC50 and MIC90 of ADP/SMZ were 0.5/2.5 and 4/20 µg/ml, respectively. The MIC of the selected pathogenic E. coli SHC28 was 0.5/2.5 µg/ml in Mueller-Hinton broth and 0.25/1.25 µg/ml in ileum fluid, respectively. In vitro, the mutant prevention concentration, the post-antibiotic effect, growth, and time-killing curves in vitro and ex vivo of ADP/SMZ against the isolate SHC28 were assayed for PD studies. The results showed that ADP/SMZ exhibited strong concentration-dependent antimicrobial activity against E. coli. After integrating the in vivo pharmacokinetic parameters of infected pigs and ex vivo PD data using the sigmoid Emax (Hill) equation, the AUC24h /MIC values in ileum fluid for bacteriostatic, bactericidal, and bacterial eradication were 18.84, 65.39, and 110.68 h, respectively. In conclusion, a dosage of 3.45/17.25 mg/kg ADP/SMZ by intramuscular injection daily for 3 consecutive days may be sufficient to treat swine colibacillosis due to E. coli with a MIC of 0.5/2.5 µg/ml.
Collapse
Affiliation(s)
- Fang Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Pharmacokinetics and pharmacodynamics of enrofloxacin treatment of Escherichia coli in a murine thigh infection modeling. BMC Vet Res 2021; 17:212. [PMID: 34107961 PMCID: PMC8191022 DOI: 10.1186/s12917-021-02908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enrofloxacin is an antibacterial drug with broad-spectrum activity that is widely indicated for veterinary use. We aim to develop the clinical applications of Enrofloxacin against colibacillosis by using the neutropenic mice thigh infection model. RESULTS The minimum inhibitory concentration (MIC) distribution of 67 isolated E. coli strains to ENR was calculated using CLSI guidelines. Whereas, the MIC50 value calculation was considered as the population PD parameter for ENR against E. coli strains. The MIC values of 15 E. coli strains were found to be nearest to the MIC50 i.e., 0.25 μg/mL. Of all the tested strains, the PK-PD and E. coli disease model was established via selected E. coli strain i.e., Heilong 15. We analyzed the PK characteristics of ENR and its metabolite ciprofloxacin (CIP) following a single subcutaneous (s.c.) injection of ENR (1.25, 2.5, 5, 10 mg/kg). The concentration-time profiling of ENR within the plasma specimens was determined by considering the non-compartmental analysis (NCA). The basic PK parameters of ENR for the peak drug concentration (Cmax) and the area under the concentration-time curve (AUC) values were found to be in the range of 0.27-1.97 μg/mL and 0.62-3.14 μg.h/mL, respectively. Multiple s.c. injection over 24 h (1.25, 2.5, 5, 10 mg/kg at various time points i.e., 6, 8, 12, and 24 h respectively) were administered to assess the targeted PD values. The Akaike Information Criterion (AIC) was used to choose PD models, and the model with the lowest AIC was chosen. The inhibitory Emax model was employed to calculate the related PK-PD parameters. The results of our study indicated that there was a strong correlation between the AUC/MIC and various antibacterial activities (R2 = 0.9928). The target values of dividing AUC/MIC by 24 h for bacteriostatic action were 1-log10 reduction, 2-log10 reduction, and 3-log10 reduction 0.325, 0.4375, 0.63, and 0.95 accordingly. CONCLUSION The identified pharmacodynamics targets for various antibacterial effects will be crucial in enhancing ENR clinical applications and serving as a key step in reducing bacterial resistance.
Collapse
|
14
|
The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials. Pharmaceutics 2021; 13:pharmaceutics13060833. [PMID: 34205113 PMCID: PMC8230268 DOI: 10.3390/pharmaceutics13060833] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) analysis has proved to be very useful to establish rational dosage regimens of antimicrobial agents in human and veterinary medicine. Actually, PK/PD studies are included in the European Medicines Agency (EMA) guidelines for the evaluation of medicinal products. The PK/PD approach implies the use of in vitro, ex vivo, and in vivo models, as well as mathematical models to describe the relationship between the kinetics and the dynamic to determine the optimal dosing regimens of antimicrobials, but also to establish susceptibility breakpoints, and prevention of resistance. The final goal is to optimize therapy in order to maximize efficacy and minimize side effects and emergence of resistance. In this review, we revise the PK/PD principles and the models to investigate the relationship between the PK and the PD of antibiotics. Additionally, we highlight the outstanding role of the PK/PD analysis at different levels, from the development and evaluation of new antibiotics to the optimization of the dosage regimens of currently available drugs, both for human and animal use.
Collapse
|
15
|
Huang SY, Wang X, Shen DY, Chen F, Zhang GY, Zhang Z, Li K, Jin Z, Du D, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg Med Chem 2021; 38:116138. [PMID: 33857737 DOI: 10.1016/j.bmc.2021.116138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A series of novel pleuromutilin derivatives were designed and synthesized with 1,2,4-triazole as the linker connected to benzoyl chloride analogues under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213, AD3 and 144) were tested by the broth dilution method. Most of the synthesized derivatives displayed potent activities, and 22-(3-amino-2-(4-methyl-benzoyl)-1,2,4-triazole-5-yl)-thioacetyl)-22-deoxypleuromutilin (compound 12) was found to be the most active antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the time-kill curves showed compound 12 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 12 was further evaluated using MRSA infected murine thigh model. Compound 12 exhibited superior antibacterial efficacy than tiamulin. It was also found that compound 12 had no significant inhibitory effect on the proliferation of RAW264.7 cells. Compound 12 was further evaluated in CYP450 inhibition assay and showed moderate inhibitory effect on CYP3A4 (IC50 = 3.95 μM). Moreover, seven candidate compounds showed different affinities with the 50S ribosome by SPR measurement. Subsequently, binding of compound 12 and 20 to the 50S ribosome was further investigated by molecular modeling. Three strong hydrogen bonds were formed through the interaction of compound 12 and 20 with 50S ribosome. The binding free energy of compound 12 and 20 with the ribosome was calculated to be -10.7 kcal/mol and -11.66 kcal/mol, respectively.
Collapse
Affiliation(s)
- Si-Yu Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ding-Yi Shen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dan Du
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
16
|
Xu N, Li M, Ai X, Lin Z. Determination of Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Parameters of Doxycycline against Edwardsiella ictaluri in Yellow Catfish ( Pelteobagrus fulvidraco). Antibiotics (Basel) 2021; 10:antibiotics10030329. [PMID: 33800996 PMCID: PMC8004065 DOI: 10.3390/antibiotics10030329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to examine the pharmacokinetics of doxycycline (DC) in yellow catfish (Pelteobagrus fulvidraco) and to calculate related pharmacokinetic-pharmacodynamic (PK/PD) parameters of DC against Edwardsiella ictaluri. The minimum inhibitory concentration of DC against E. ictaluri was determined to be 500 µg/L. As the increase of oral dose from 10 to 40 mg/kg, the area under the concentration vs. time curve from 0 to 96 h (AUC0-96) values were considerably increased in gill, kidney, muscle and skin, and plasma, except in liver. Cmax values exhibited a similar dose-dependent increase trend in plasma and tissues except in liver, but other PK parameters had no apparent dose-dependence. The PK/PD parameter of the ratio of AUC0-96 to minimum inhibitory concentration (AUC0-96h/MIC) was markedly increased in plasma and tissues dose-dependently except in liver, but %T > MIC values were increased only moderately at some dose groups. After receiving the same dose with disparate time intervals from 96 to 12 h, the AUC0-96h/MIC was distinctly increased in plasma and tissues, but the %T > MIC had a decreasing trend. When administering 20 mg/kg with a time interval of 96 h, the AUC0-96h/MIC values were consistently >173.03 h and the %T > MIC values were above 99.47% in plasma and all tissues. These results suggest that administration of DC at 20 mg/kg every 96 h is a preferable regimen in yellow catfish.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
- Correspondence: (X.A.); (Z.L.)
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
- Correspondence: (X.A.); (Z.L.)
| |
Collapse
|
17
|
Toutain PL, Pelligand L, Lees P, Bousquet-Mélou A, Ferran AA, Turnidge JD. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J Vet Pharmacol Ther 2020; 44:172-200. [PMID: 33089523 DOI: 10.1111/jvp.12917] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) modelling is the initial step in the semi-mechanistic approach for optimizing dosage regimens for systemically acting antimicrobial drugs (AMDs). Numerical values of PK/PD indices are used to predict dose and dosing interval on a rational basis followed by confirmation in clinical trials. The value of PK/PD indices lies in their universal applicability amongst animal species. Two PK/PD indices are routinely used in veterinary medicine, the ratio of the area under the curve of the free drug plasma concentration to the minimum inhibitory concentration (MIC) (fAUC/MIC) and the time that free plasma concentration exceeds the MIC over the dosing interval (fT > MIC). The basic concepts of PK/PD modelling of AMDs were established some 20 years ago. Earlier studies have been reviewed previously and are not reconsidered in this review. This review describes and provides a critical appraisal of more recent, advanced PK/PD approaches, with particular reference to their application in veterinary medicine. Also discussed are some hypotheses and new areas for future developments.First, a brief overview of PK/PD principles is presented as the basis for then reviewing more advanced mechanistic considerations on the precise nature of selected indices. Then, several new approaches to selecting PK/PD indices and establishing their numerical values are reviewed, including (a) the modelling of time-kill curves and (b) the use of population PK investigations. PK/PD indices can be used for dose determination, and they are required to establish clinical breakpoints for antimicrobial susceptibility testing. A particular consideration is given to the precise nature of MIC, because it is pivotal in establishing PK/PD indices, explaining that it is not a "pharmacodynamic parameter" in the usual sense of this term.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France.,Royal Veterinary College, University of London, London, UK
| | | | - Peter Lees
- Royal Veterinary College, University of London, London, UK
| | | | - Aude A Ferran
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - John D Turnidge
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Litterio NJ, Lorenzutti AM, Zarazaga MDP, Himelfarb MA, San Andrés-Larrea MI, Serrano-Rodríguez JM. Comparative pharmacokinetics and pharmacokinetic/pharmacodynamic analysis by nonlinear mixed-effects modeling of cefquinome in nonpregnant, pregnant, and lactating goats after intravenous and intramuscular administration. J Vet Pharmacol Ther 2020; 44:68-78. [PMID: 32779241 DOI: 10.1111/jvp.12900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Cefquinome is a fourth-generation cephalosporin that is used empirically in goats. Different physiologic factors like pregnancy or lactation could determine the pharmacokinetic behavior of drugs in the organism. The objectives of this study are to (a) compare the pharmacokinetics of cefquinome after intravenous and intramuscular administration in adult nonpregnant (n = 6), pregnant (n = 6), and lactating goats (n = 6), at a dose of 2 mg/kg, with rich sampling by nonlinear mixed-effects modeling, (b) conduct a pharmacokinetic/pharmacodynamic analysis to evaluate the efficacy of the recommended posology in goats with different physiological states, and (c) determine the optimal posology that achieve a PTA value ≥ 90%, taking into account a T > MIC ≥ 60% of a MIC value ≤ 0.25 µg/ml, in the different subpopulations of goats for both routes. Gestation significantly increased Ka and V1, while reduced F0, Cl, and Q. On the other hand, lactation significantly increased V1 and reduced Tk0. Cefquinome concentrations achieved in placental cotyledon, amniotic fluid, and fetal serum indicate a minimal penetration across the placental barrier. Moreover, milk penetration of cefquinome was minimal. The total body clearance of cefquinome for goats was 0.29 L kg-1 hr-1 , that is apparently higher than the reported for cows (0.13 L kg-1 hr-1 ) and pigs (0.16 L kg-1 hr-1 ). So, the optimal dose regimen for cefquinome after intravenous and intramuscular administration required higher dose and frequency of administration compared with recommendations for cows or pigs. Therefore, 2 mg kg-1 8 hr-1 and 5 mg kg-1 12 hr-1 could be used for IV and IM routes, respectively, for the treatment of respiratory infections caused by P. multocida and M. haemolytica, but only 5 mg kg-1 12 hr-1 by both routes should be recommended for Escherichia coli infections.
Collapse
Affiliation(s)
- Nicolás Javier Litterio
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET-Universidad Católica de Córdoba, Córdoba, Argentina
| | - Augusto Matías Lorenzutti
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET-Universidad Católica de Córdoba, Córdoba, Argentina
| | - María Del Pilar Zarazaga
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET-Universidad Católica de Córdoba, Córdoba, Argentina
| | | | | | - Juan Manuel Serrano-Rodríguez
- Department of Nursing, Pharmacology and Physiotherapy, Pharmacology Area, Faculty of Veterinary Medicine, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
19
|
Luo W, Chen D, Wu M, Li Z, Tao Y, Liu Q, Pan Y, Qu W, Yuan Z, Xie S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J Vet Sci 2020; 20:e40. [PMID: 31565887 PMCID: PMC6769327 DOI: 10.4142/jvs.2019.20.e40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
Misuse and abuse of veterinary antimicrobial agents have led to an alarming increase in bacterial resistance, clinical treatment failure, and drug residues. To address these problems, consistent and appropriate dosage regimens for veterinary antimicrobial agents are needed. Pharmacokinetics/Pharmacodynamics (PK/PD) models have been widely used to establish rational dosage regimens for veterinary antimicrobial agents that can achieve effective prevention and treatment of bacterial diseases and avoid the development of bacterial resistance. This review introduces building methods for PK/PD models and describes current PK/PD research progress toward rational dosage regimens for veterinary antimicrobial agents. Finally, the challenges and prospects of PK/PD models in the design of dosage regimens for veterinary antimicrobial agents are reviewed. This review will help to increase awareness of PK/PD modeling among veterinarians and hopefully promote its development and future use.
Collapse
Affiliation(s)
- Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengru Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenxia Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
20
|
Yang Q, Liu X, Zhang C, Yong K, Clifton AC, Ding H, Liu Y. Pharmacokinetics and Pharmacodynamics of Gamithromycin Treatment of Pasteurella multocida in a Murine Lung Infection Model. Front Pharmacol 2019; 10:1090. [PMID: 31680940 PMCID: PMC6798029 DOI: 10.3389/fphar.2019.01090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Gamithromycin is approved for the treatment and prevention of bovine respiratory disease (BRD), which is caused mainly by Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma species. In this study, multiple dosage regimens were administered to the neutropenic mouse lung infection model in order to investigate the pharmacokinetic/pharmacodynamic (PK/PD) parameters of gamithromycin treatment of P. multocida and to further define the PK/PD parameter that best correlates with the efficacy of gamithromycin against P. multocida. The PK characteristics of gamithromycin were analyzed after a single subcutaneous (s.c.) injection (1, 3, 6, and 9 mg/kg). The concentration–time profiles of unbound (f) gamithromycin in plasma samples were analyzed by non-compartmental analysis. The main PK parameters of gamithromycin for the area under the concentration–time curve from 0 to 24 h (f AUC0–24) and the peak drug concentration (f Cmax) values ranged from 0.86 to 8.42 µg·h/ml and from 0.55 to 5.69 µg/ml, respectively. The PD values were calculated based on multiple s.c. injections over 24 h (1, 3, 6, and 9 mg/kg at 6, 8, 12, and 24 h, respectively; total dosage 1–36 mg/ kg). The minimum inhibitory concentration (MIC) of gamithromycin against P. multocida in mice serum was 0.15 μg/ml. Analysis of PK/PD indices using the inhibitory effect Emax model indicated a strong correlation (R2 = 0.9624) between the f AUC0–24/MIC ratio and various antibacterial effects. The area under the unbound concentration–time curve over 24 h to MIC (f AUC0–24/MIC) predicted for bacteriostatic action, 1-log10 reduction, 2-log10 reduction, and 3-log10 reduction were 56.77, 90.18, 143.06, and 239.44 h, respectively. These in vivo data may facilitate gamithromycin dosage optimization against P. multocida in veterinary medicine.
Collapse
Affiliation(s)
- Qingwen Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Xuesong Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenghuan Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kang Yong
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Alancia Carol Clifton
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huanzhong Ding
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
21
|
Li XD, Chi SQ, Wu LY, Liu C, Sun T, Hong J, Chen X, Chen XG, Wang GS, Yu DJ. PK/PD modeling of Ceftiofur Sodium against Haemophilus parasuis infection in pigs. BMC Vet Res 2019; 15:272. [PMID: 31370843 PMCID: PMC6676638 DOI: 10.1186/s12917-019-2008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ceftiofur Sodium is widely used in China. Our aim was to determine Ceftiofur Sodium activity and optimize dosing regimens against the pathogen Haemophilus parasuis using an in vitro and ex vivo pharmacokinetics/pharmacodynamics modeling approach. By adopting these strategies, we wanted to extend the effective life of Ceftiofur Sodium in reduce drug-resistance in pigs. RESULTS We established an H. parasuis infection model in pigs, and assessed the pharmacokinetics of Ceftiofur Sodium in both healthy and infected animals. After Ceftiofur Sodium (10 mg/kg, i.m.) administration to healthy and H. parasuis-infected pigs, plasma based desfuroylceftiofur (a metabolite of Ceftiofur Sodium) was measured by High Performance Liquid Chromatography. The pharmacokinetics of Ceftiofur Sodium (desfuroylceftiofur) was consistent with a two-compartment open model, with first-order absorption. We observed no significant differences (P > 0.05) in pharmacokinetic parameters between healthy and infected pigs. Pharmacodynamics data showed that Ceftiofur Sodium was highly inhibitory against H. parasuis, with MIC, MBC, and MPC values of 0.003125, 0.0125 and 0.032 μg/mL, respectively. Desfuroylceftiofur in plasma also had strong bactericidal activity. Almost all H. parasuis cultured in plasma medium of Ceftiofur Sodium-inoculated healthy pigs, at each time point, were killed within 24 h. A weaker antibacterial activity was measured in infected-pig plasma medium at 18, 24, 36, and 48 h, after Ceftiofur Sodium inoculation. Pharmacokinetic parameters were combined with ex vivo pharmacodynamic parameters, and the bacteriostatic effect (36.006 h), bactericidal effect (71.637 h) and clearance (90.619 h) within 24 h, were determined using the Hill equation. Dose-calculation equations revealed the optimal dose of Ceftiofur Sodium to be 0.599-1.507 mg/kg. CONCLUSIONS There were no significant differences in Ceftiofur Sodium pharmacokinetic parameters between healthy and infected pigs, although pharmacokinetics/pharmacodynamics fitting curves showed obviously differences. The optimal dose of Ceftiofur Sodium was lower than recommended (3 mg/kg), which may provide improved treatments for Glässers disease, with lower drug-resistance possibility.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng-Qing Chi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Yun Wu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tong Sun
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hong
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Gang Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guan-Song Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dao-Jin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
22
|
Kang J, Hossain MA, Park HC, Kim Y, Lee KJ, Park SW. Pharmacokinetic and pharmacodynamic integration of enrofloxacin against Salmonella Enteritidis after administering to broiler chicken by per-oral and intravenous routes. J Vet Sci 2019; 20:e15. [PMID: 30944537 PMCID: PMC6441814 DOI: 10.4142/jvs.2019.20.e15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023] Open
Abstract
It is crucial to optimize the dose of fluoroquinolones to avoid antibiotic resistance and to attain clinical success. We undertook this study to optimize the dose of enrofloxacin against Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in chicken by assessing its pharmacokinetic/pharmacodynamic (PK/PD) indices. The antibacterial activities of enrofloxacin against S. Enteritidis were evaluated. After administering 10 mg/kg body weight (b.w.) of enrofloxacin to broiler chickens of both sexes by intravenous (IV) and peroral (PO) routes, blood samples were drawn at different intervals and enrofloxacin concentrations in plasma were determined. PK/PD indices were calculated by integrating the PK and PD data. The elimination half-lives (T1/2), time required to reach peak concentration (Tmax), peak concentration (Cmax), and area under curve (AUC) after administering enrofloxacin by PO and IV routes were 25.84 ± 1.40 h, 0.65 ± 0.12 h, 3.82 ± 0.59 µg/mL, and 20.84 ± 5.0 µg·h/mL, and 12.84 ± 1.4 h, 0.22 ± 0.1 h, 6.74 ± 0.03 µg/mL, and 21.13 ± 0.9 µg.h/mL, respectively. The bioavailability of enrofloxacin was 98.6% ± 8.9% after PO administration. The MICs of enrofloxacin were 0.0625–1 µg/mL against S. Enteritidis strains, and the MIC50 was 0.50 µg/mL. The Cmax/MIC50 were 7.64 ± 0.2 and 13.48 ± 0.7 and the 24 h AUC/MIC50 were 41.68 ± 0.1 and 42.26 ± 0.3 after administering the drug through PO and IV routes, respectively. The data in this study indicate that the application of 50 mg/kg b.w. of enrofloxacin to chicken through PO and IV routes with a dosing interval of 24 h can effectively cure S. Enteritidis infection, indicating the need for a 5-fold increase in the recommended dosage of enrofloxacin in chicken.
Collapse
Affiliation(s)
- JeongWoo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Md Akil Hossain
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hae-Chul Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - YongSang Kim
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kwang-Jick Lee
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sung-Won Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
23
|
Zhao Y, Guo LL, Fang B, Liu B. Pharmacokinetic/pharmacodynamic (PK/PD) evaluation of tulathromycin against Haemophilus parasuis in an experimental neutropenic guinea pig model. PLoS One 2018; 13:e0209177. [PMID: 30596709 PMCID: PMC6312216 DOI: 10.1371/journal.pone.0209177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023] Open
Abstract
The objective of the study was to develop an ex-vivo PK/PD model of intramuscular (IM) administration of tulathromycin and to test its efficacy against Haemophilus parasuis (H. parasuis) infection in intraperitoneal-inoculated neutropenic guinea pigs. The pharmacokinetics (PKs) of tulathromycin at doses of 1 and 10 mg/kg in H. parasuis-infected neutropenic guinea pig were studied by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), mutant prevention concentration (MPC), post-antibiotic effect (PAE) and dynamic time-kill curve experiments were carried out using H. parasuis strain 13R. Tulathromycin exhibited concentration-dependent activity and PAE persisted long after administration of the antibiotic. The ratio of the 24-h area under the concentration–time curve (AUC) to MIC in serum (AUC24h/MICserum) was recognized as an important PK/PD parameter that positively correlated with the in vitro antibacterial effectiveness of tulathromycin (R2 = 0.9961 or R2 = 1). For the 1 and 10 mg/kg treatments with tulathromycin, the values of AUC24h/MIC for H. parasuis bacteriostatic action, bactericidal action and virtual bacterial eradication were respectively 22.73, 34.5 and 88.03 h for the 1 mg/kg treatment and respectively 24.94, 30.94 and 49.92 h for the 10 mg/kg treatment. In addition, we demonstrated that doses of 7.2–8.0 mg/kg of tulathromycin resulted in high eradication rates (99.99%). Using a previously published conversion factor of 0.296, we were able to estimate an approximate dose, 2.1–2.4 mg/kg, that should also obtain high eradication rates in the target animal, pigs. This study can help optimize tulathromycin efficacy against H. parasuis infections in swine farming.
Collapse
Affiliation(s)
- Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Li-Li Guo
- Qingdao Yebio Biological Engineering Co., Ltd, Qingdao, Shandong, China
| | - Binghu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
- * E-mail: (FBH); (LBT)
| | - Baotao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (FBH); (LBT)
| |
Collapse
|
24
|
Felde O, Kreizinger Z, Sulyok KM, Hrivnák V, Kiss K, Jerzsele Á, Biksi I, Gyuranecz M. Antibiotic susceptibility testing of Mycoplasma hyopneumoniae field isolates from Central Europe for fifteen antibiotics by microbroth dilution method. PLoS One 2018; 13:e0209030. [PMID: 30533041 PMCID: PMC6289410 DOI: 10.1371/journal.pone.0209030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae infections are responsible for significant economic losses in the swine industry. Commercially available vaccines are not able to inhibit the colonisation of the respiratory tract by M. hyopneumoniae absolutely, therefore vaccination can be completed with antibiotic treatment to moderate clinical signs and improve performances of the animals. Antibiotic susceptibility testing of M. hyopneumoniae is time-consuming and complicated; therefore, it is not accomplished routinely. The aim of this study was to determine the in vitro susceptibility to 15 different antibiotics of M. hyopneumoniae isolates originating from Hungarian slaughterhouses and to examine single-nucleotide polymorphisms (SNPs) in genes affecting susceptibility to antimicrobials. Minimum inhibitory concentration (MIC) values of the examined antibiotics against 44 M. hyopneumoniae strains were determined by microbroth dilution method. While all of the tested antibiotics were effective against the majority of the studied strains, high MIC values of fluoroquinolones (enrofloxacin 2.5 μg/ml; marbofloxacin 5 μg/ml) were observed against one strain (MycSu17) and extremely high MIC values of macrolides and lincomycin (tilmicosin, tulathromycin and lincomycin >64 μg/ml; gamithromycin 64 μg/ml; tylosin 32 μg/ml and tylvalosin 2 μg/ml) were determined against another, outlier strain (MycSu18). Amino acid changes in the genes gyrA (Gly81Ala; Ala83Val; Glu87Gly, according to Escherichia coli numbering) and parC (Ser80Phe/Tyr; Asp84Asn) correlated with decreased antibiotic susceptibility to fluoroquinolones and a SNP in the nucleotide sequence of the 23S rRNA (A2059G) was found to be associated with increased MIC values of macrolides. The correlation was more remarkable when final MIC values were evaluated. This study presented the antibiotic susceptibility profiles of M. hyopneumoniae strains circulating in the Central European region, demonstrating the high in vitro efficacy of the tested agents. The observed high MIC values correlated with the SNPs in the examined regions and support the relevance of susceptibility testing and directed antibiotic therapy.
Collapse
Affiliation(s)
- Orsolya Felde
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kinga Mária Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Hrivnák
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Biksi
- Department and Clinic of Production Animals, University of Veterinary Medicine, Üllő, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
25
|
Abstract
Leptospirosis is a worldwide zoonotic disease determined by pathogenic spirochetes of the genus Leptospira. The control of bovine leptospirosis involves several measures including antibiotic treatment of carriers. Despite its importance, few studies regarding antimicrobial susceptibility of strains from bovine origin have been conducted. The aim of this study was to determine the in vitro susceptibility of Leptospira strains obtained from cattle in Rio de Janeiro, Brazil, against the main antibiotics used in bovine veterinary practice. A total of 23 Leptospira spp. strains were investigated for minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) using broth macrodilution. At the species level, there were not differences in MIC susceptibility except for tetracycline (P < 0.05). Nevertheless, at the serogroup level, differences in MIC were observed among Sejroe strains, mainly for ceftiofur, doxycycline and in MBC for streptomycin (P < 0.05). One strain presented MBC values above maximum plasmatic concentration described for streptomycin and was classified as presenting reduced susceptibility. Efficacy of antimicrobial therapy on bovine leptospirosis could be compromised due to occurrence of infection by Leptospira strains presenting reduced susceptibility.
Collapse
|
26
|
Hoeltig D, Rohde J, Brunner B, Hellmann K, Grandemange E, Waldmann KH. Efficacy of a one-shot marbofloxacin treatment on acute pleuropneumonia after experimental aerosol inoculation of nursery pigs. Porcine Health Manag 2018; 4:13. [PMID: 29977591 PMCID: PMC6013868 DOI: 10.1186/s40813-018-0089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine pleuropneumonia, caused by Actinobacillus pleuropneumoniae, is a bacterial respiratory disease of swine. Acute outbreaks of the disease are often accompanied by high mortality and economic losses. As severe cases of the disease frequently require parenteral antibiotic treatment of the animals, the efficacy of a single, high dose of marbofloxacin was compared to a three-time application of a dose of enrofloxacin under experimental conditions. METHODS A blinded, controlled, randomized and blocked dose confirmation study was conducted to test the efficacy and safety of a single dose of 8 mg/kg marbofloxacin (160 mg/ml, Forcyl® Swine, Vetoquinol SA, France) to treat acute porcine pleuropneumonia after experimental aerosol inoculation of pigs with A. pleuropneumoniae serotype 2. The results were compared to a three consecutive day treatment of 2.5 mg/kg enrofloxacin and a mock (saline) treatment. Criteria for the assessment of efficacy were severity of lung lesions, bacteriological cure and the course of clinical disease after treatment. RESULTS Thirty six nursery pigs were divided into three treatment groups: marbofloxacin (T1), enrofloxacin (T2) and mock (T3). Statistically significant superiority (p < 0.05) of marbofloxacin and enrofloxacin compared to the mock-treated group was demonstrated for all efficacy criteria. The need of rescue euthanasia due to severity of symptoms was significantly reduced in both treatment groups (T1: 1 pig; T2: 0 pigs; vs. T3: 8 pigs). On day 6 after treatment initiation, clinical cure was observed in 10 (T1), 10 (T2) but only 1 of the piglets in T3. Extent of lung lesions (mean of lung lesion score T1: 3.9, T2: 6.0, T3: 21.1) and bacteriological isolation from lung tissue (on day 6 after treatment initiation: T1 = 0 pigs; T2 = 1 pig; T3 = all pigs) were also significantly reduced within both treatment groups. There were no adverse events linked to the drug administration and no injection site reactions were observed. CONCLUSIONS Both applied antimicrobial treatments were proven safe and efficacious for the treatment of acute porcine pleuropneumonia. No statistically significant differences were detected between the antibiotic treatments.
Collapse
Affiliation(s)
- Doris Hoeltig
- Clinic for Swine, Small Ruminants, forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Judith Rohde
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Birgit Brunner
- Klifovet AG, Geyerspergerstr. 27, D-80689 Munich, Germany
| | - Klaus Hellmann
- Klifovet AG, Geyerspergerstr. 27, D-80689 Munich, Germany
| | - Erik Grandemange
- Vetoquinol SA, Research and Development Centre, B.P. 189, Cedex 70204 Lure, France
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany
| |
Collapse
|
27
|
Toutain PL, Bousquet-Mélou A, Damborg P, Ferran AA, Mevius D, Pelligand L, Veldman KT, Lees P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front Microbiol 2017; 8:2344. [PMID: 29326661 PMCID: PMC5736858 DOI: 10.3389/fmicb.2017.02344] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) - the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index (fAUC/MIC or fT > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- UMR 1331 Toxalim, INRA, ENVT, Toulouse, France
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dik Mevius
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Ludovic Pelligand
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Kees T. Veldman
- National Reference Laboratory on Antimicrobial Resistance in Animals, Lelystad, Netherlands
| | - Peter Lees
- The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
28
|
Lei Z, Liu Q, Yang B, Khaliq H, Cao J, He Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front Pharmacol 2017; 8:856. [PMID: 29209222 PMCID: PMC5701813 DOI: 10.3389/fphar.2017.00856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the Cmax (6.28 μg/ml), AUC0-24 h (60.30 μg.h/ml), AUC0-∞ (88.94 μg.h/ml), T1/2ke, (12.48 h), Tmax (0.75 h) and Clb (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS, was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid Emax modeling, the AUC0-24h/MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Corrigendum to "Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction". BIOMED RESEARCH INTERNATIONAL 2017; 2017:1408737. [PMID: 29312989 PMCID: PMC5695020 DOI: 10.1155/2017/1408737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022]
Abstract
[This corrects the article DOI: 10.1155/2016/5465678.].
Collapse
|
30
|
Comment on "Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction". BIOMED RESEARCH INTERNATIONAL 2017; 2017:7698452. [PMID: 28804722 PMCID: PMC5539929 DOI: 10.1155/2017/7698452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
|
31
|
Luppi A. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porcine Health Manag 2017; 3:16. [PMID: 28794894 PMCID: PMC5547460 DOI: 10.1186/s40813-017-0063-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023] Open
Abstract
Intestinal infection with enterotoxigenic Escherichia coli (ETEC) is an important disease in swine resulting in significant economic losses. Knowledge about the epidemiology, the diagnostic approach and methods of control are of fundamental importance to tackle the disease. The ETEC causing neonatal colibacillosis mostly carry the fimbriae F4 (k88), F5 (k99), F6 (987P) or F41, while the ETEC of post-weaning diarrhoea carry the fimbriae F4 (k88) and F18. These fimbriae adhere to specific receptors on porcine intestinal brush border epithelial cells (enterocytes), starting the process of enteric infection. After this colonization, the bacteria produce one or more enterotoxins inducing diarrhoea, such as the heat stable toxin a (STa), the heat stable toxin b (STb), and the heat labile toxin (LT). A role in the pathogenesis of the disease was demonstrated for these toxins. The diagnosis of enteric colibacillosis is based on the isolation and quantification of the pathogenic E.coli coupled with the demonstration by PCR of the genes encoding for virulence factors (fimbriae and toxins). The diagnostic approach to enteric colibacillosis must consider the differential diagnosis and the potential different causes that can be involved in the outbreak. Among the different methods of control of colibacillosis, the use of antimicrobials is widely practiced and antibiotics are used in two main ways: as prophylactic or metaphylactic treatment to prevent disease and for therapeutic purposes to treat diseased pigs. An accurate diagnosis of enteric colibacillosis needs an appropriate sampling for the isolation and quantification of the ETEC responsible for the outbreak by using semi-quantitative bacteriology. Definitive diagnosis is based on the presence of characteristic lesions and results of bacteriology along with confirmation of appropriate virulence factors to identify the isolated E.coli. It is important to confirm the diagnosis and to perform antimicrobial sensitivity tests because antimicrobial sensitivity varies greatly among E. coli isolates. Growing concern on the increase of antimicrobial resistance force a more rational use of antibiotics and this can be achieved through a correct understanding of the issues related to antibiotic therapy and to the use of antibiotics by both practitioners and farmers.
Collapse
Affiliation(s)
- Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| |
Collapse
|
32
|
Integrated pharmacokinetic-Pharmacodynamic (PK/PD) model to evaluate the in vivo antimicrobial activity of Marbofloxacin against Pasteurella multocida in piglets. BMC Vet Res 2017; 13:178. [PMID: 28619095 PMCID: PMC5471993 DOI: 10.1186/s12917-017-1099-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Marbofloxacin is a veterinary fluoroquinolone with high activity against Pasteurella multocida. We evaluated it’s in vivo activity against P. multocida based on in vivo time-kill data in swine using a tissue-cage model. A series of dosages ranging from 0.15 to 2.5 mg/kg were administered intramuscularly after challenge with P. multocida type B, serotype 2. Results The ratio of the 24 h area under the concentration-time curve divided by the minimum inhibitory concentration (AUC24TCF/MIC) was the best PK/PD index correlated with the in vivo antibacterial effectiveness of marbofloxacin (R2 = 0.9279). The AUC24TCF/MIC necessary to achieve a 1-log10 CFU/ml reduction and a 3-log10 CFU/ml (90% of the maximum response) reduction as calculated by an inhibitory sigmoid Emax model were 13.48 h and 57.70 h, respectively. Conclusions Marbofloxacin is adequate for the treatment of swine infected with P. multocida. The tissue-cage model played a significant role in achieving these PK/PD results.
Collapse
|
33
|
Grandemange E, Perrin PA, Cvejic D, Haas M, Rowan T, Hellmann K. Randomised controlled field study to evaluate the efficacy and clinical safety of a single 8 mg/kg injectable dose of marbofloxacin compared with one or two doses of 7.5 mg/kg injectable enrofloxacin for the treatment of Actinobacillus pleuropneumoniae infections in growing-fattening pigs in Europe. Porcine Health Manag 2017; 3:10. [PMID: 28496988 PMCID: PMC5424389 DOI: 10.1186/s40813-017-0057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
Background Acute outbreaks of Actinobacillus pleuropneumoniae (APP) require rapid, effective, parenteral antimicrobial treatment. The efficacy and safety of a single, short-acting, high dose of marbofloxacin (Forcyl® swine 160 mg/mL) compared with 1 or 2 doses of 7.5 mg/kg enrofloxacin in APP outbreaks in European farms was studied. Methods A controlled, randomised block, blinded, multicentre, field study was conducted on four farms with acute respiratory disease associated with APP. Animals with clinical signs of respiratory disease were allocated similarly to intramuscular treatments of either a single dose 8 mg/kg marbofloxacin on day 0 or, 7.5 mg/kg enrofloxacin (Baytril 1nject®) on day 0 and again on day 2, if clinical signs had not improved. Results The results were similar for intention to treat (242 pigs) and per protocol populations (239 pigs). On day 0, all pigs had pyrexia (means, 40.6 °C), moderate to severe clinical signs (depression, cough, dyspnoea). Following treatment, animals improved rapidly and on day 7, clinical signs were absent or mild in all pigs and mean temperatures for each treatment were <39.5 °C (P > 0.05). The primary efficacy criterion, animals cured, for marbofloxacin and enrofloxacin was 81.8 and 81.4% on day 7, and 84.2 and 82.2% on day 21, respectively. Results for cure, respiratory disease removals and mortalities, and relapses were compared using confidence intervals and confirmed that marbofloxacin was non-inferior to enrofloxacin (P > 0.05). There were no significant treatment differences in live weight gains, adverse events and injection site reactions (<2.5% animals) (P > 0.05). Significantly more animals developed concurrent disorders in the enrofloxacin (7.5%) than marbofloxacin (0.0%) group (P < 0.01). On day 0, the MIC90 values of APP for marbofloxacin and enrofloxacin were 0.06 μg/mL for APP, less than the clinical breakpoints. Conclusions Marbofloxacin (single dose of 8 mg/kg) and enrofloxacin (1 or 2 doses of 7.5 mg/kg) were clinically safe and effective in the treatment of clinical respiratory disease associated predominantly with APP in four European commercial, fattening pig herds.
Collapse
Affiliation(s)
- Erik Grandemange
- Vetoquinol SA, Research and Development Centre, B.P. 189, 70204 Lure Cedex, France
| | | | - Dejean Cvejic
- Klifovet AG, Geyerspergerstr 27, D-80689 Munich, Germany
| | - Miriam Haas
- Klifovet AG, Geyerspergerstr 27, D-80689 Munich, Germany
| | - Tim Rowan
- Rowdix Ltd, Folly Hall, Cawton, York, YO62 4LW UK
| | - Klaus Hellmann
- Klifovet AG, Geyerspergerstr 27, D-80689 Munich, Germany
| |
Collapse
|