1
|
Zheng L, Chen S, Wu Q, Li X, Zeng W, Dong F, An W, Qin F, Lei L, Zhao C. Tree shrews as a new animal model for systemic sclerosis research. Front Immunol 2024; 15:1315198. [PMID: 38343538 PMCID: PMC10853407 DOI: 10.3389/fimmu.2024.1315198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Systemic sclerosis (SSc) is a chronic systemic disease characterized by immune dysregulation and fibrosis for which there is no effective treatment. Animal models are crucial for advancing SSc research. Tree shrews are genetically, anatomically, and immunologically closer to humans than rodents. Thus, the tree shrew model provides a unique opportunity for translational research in SSc. Methods In this study, a SSc tree shrew model was constructed by subcutaneous injection of different doses of bleomycin (BLM) for 21 days. We assessed the degree of inflammation and fibrosis in the skin and internal organs, and antibodies in serum. Furthermore, RNA sequencing and a series of bioinformatics analyses were performed to analyze the transcriptome changes, hub genes and immune infiltration in the skin tissues of BLM induced SSc tree shrew models. Multiple sequence alignment was utilized to analyze the conservation of selected target genes across multiple species. Results Subcutaneous injection of BLM successfully induced a SSc model in tree shrew. This model exhibited inflammation and fibrosis in skin and lung, and some developed esophageal fibrosis and secrum autoantibodies including antinuclear antibodies and anti-scleroderma-70 antibody. Using RNA sequencing, we compiled skin transcriptome profiles in SSc tree shrew models. 90 differentially expressed genes (DEGs) were identified, which were mainly enriched in the PPAR signaling pathway, tyrosine metabolic pathway, p53 signaling pathway, ECM receptor interaction and glutathione metabolism, all of which are closely associated with SSc. Immune infiltration analysis identified 20 different types of immune cells infiltrating the skin of the BLM-induced SSc tree shrew models and correlations between those immune cells. By constructing a protein-protein interaction (PPI) network, we identified 10 hub genes that were significantly highly expressed in the skin of the SSc models compared to controls. Furthermore, these genes were confirmed to be highly conserved in tree shrews, humans and mice. Conclusion This study for the first time comfirmed that tree shrew model of SSc can be used as a novel and promising experimental animal model to study the pathogenesis and translational research in SSc.
Collapse
Affiliation(s)
- Leting Zheng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuyuan Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulin Wu
- Department of General Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wen Zeng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Dong
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei An
- Respiratory and Critical Care Medicine Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fang Qin
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Lei
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B, Wang X. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells. Pharmacol Res 2021; 165:105416. [PMID: 33412277 DOI: 10.1016/j.phrs.2020.105416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Wacao pentacyclic triterpenoid saponins (WPTS) is a newly discovered insulin sensitivity enhancer. It is a powerful hypoglycemic compound derived from Silene viscidula, which has a hypoglycemic effect similar to that of insulin. It can rapidly reduce blood glucose levels, normalizing them within 3 days of administration. However, its mechanism of action is completely different from that of insulin. Thus, we aimed to determine the pharmacological effects and mechanism of activity of WPTS on type 2 diabetes to elucidate the main reasons for its rapid effects. The results showed that WPTS could effectively improve insulin resistance in KKAy diabetic mice. Comparative transcriptomics showed that WPTS could upregulate the expression of insulin resistance-related genes such as glucose transporter type 4 (Glut4), insulin receptor substrate 1 (Irs1), Akt, and phosphoinositide 3-kinase (PI3K), and downregulate the expression of lipid metabolism-related genes such as monoacylglycerol O-acyltransferase 1 (Moat1), lipase C (Lipc), and sphingomyelin phosphodiesterase 4 (Smpd4). The results indicated that the differentially expressed genes could regulate lipid metabolism via the PI3K/AKT metabolic pathway, and it is noteworthy that WPTS was found to upregulate Glut4 expression, decrease blood glucose levels, and attenuate insulin resistance via the PI3K/AKT pathway. Q-PCR and western blotting further validated the transcriptomics findings at the mRNA and protein levels, respectively. We believe that WPTS can achieve a rapid hypoglycemic effect by improving the lipid metabolism and insulin resistance of the diabetic KKAy mice. WPTS could be a very promising candidate drug for the treatment of diabetes and deserves further research.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, China
| | - Sanyang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baosheng Zhao
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China; Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
3
|
Gorbatyuk OS, Pitale PM, Saltykova IV, Dorofeeva IB, Zhylkibayev AA, Athar M, Fuchs PA, Samuels BC, Gorbatyuk MS. A Novel Tree Shrew Model of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:799711. [PMID: 35046899 PMCID: PMC8762304 DOI: 10.3389/fendo.2021.799711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Iuliia B Dorofeeva
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek A Zhylkibayev
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
5
|
Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch. Food Chem 2018; 264:427-434. [DOI: 10.1016/j.foodchem.2018.05.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
|
6
|
Wang J, Xu S, Gao J, Zhang L, Zhang Z, Yang W, Li Y, Liao S, Zhou H, Liu P, Liang B. SILAC-based quantitative proteomic analysis of the livers of spontaneous obese and diabetic rhesus monkeys. Am J Physiol Endocrinol Metab 2018; 315:E294-E306. [PMID: 29664677 DOI: 10.1152/ajpendo.00016.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder that affects more than 10% of the population worldwide. Obesity is a major cause of insulin resistance and contributes to the development of T2DM. Liver is an essential metabolic organ that plays crucial roles in the pathogenesis of obesity and diabetes. However, the underlying mechanisms of liver in the transition of obesity to diabetes are not fully understood. The nonhuman primate rhesus monkey is an appropriate animal for research of human diseases. Here, we first screened and selected three individuals of spontaneously diabetic rhesus monkeys. Interestingly, the diabetic monkeys were obese with a high body mass index at the beginning, but gradually lost their body weight during one year of observation. Furthermore, we performed stable isotope labeling with amino acids in cell culture-based quantitative proteomics to identify proteins and signaling pathways with altered expression in the liver of obese and diabetic monkeys. In total, 3,509 proteins were identified and quantified, of which 185 proteins displayed an altered expression level. Gene ontology analysis revealed that the expression of proteins involved in fatty acids β-oxidation and galactose metabolism was increased in obese monkeys; while proteins involved in oxidative phosphorylation and branched chain amino acid (BCAA) degradation were upregulated in diabetic monkeys. In addition, we observed mild apoptosis in the liver of diabetic monkeys, suggesting liver injury at the late onset of diabetes. Taken together, our liver proteomics may reveal a distinct metabolic transition from fatty acids β-oxidation in obese monkey to BCAA degradation in diabetic monkeys.
Collapse
Affiliation(s)
- Junlong Wang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Wenhui Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shasha Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Bin Liang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
7
|
Zhao Y, Liu Y, Yuan J, Dai X, Niu M, Sun X, Kuang D, Wang W, Tong P, Li N, Xiang L, Jia Y, Dai J, Chen H. Regeneration of islet β-cells in tree shrews and rats. Animal Model Exp Med 2018; 1:152-161. [PMID: 30891560 PMCID: PMC6388076 DOI: 10.1002/ame2.12023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUD Current understanding of injury and regeneration of islet β-cells in diabetes is mainly based on rodent studies. The tree shrew is now generally accepted as being among the closest living relatives of primates, and has been widely used in animal experimentation. However, there are few reports on islet cell composition and regeneration of β-cells in tree shrews. METHODS In this study, we examined the changes in islet cell composition and regeneration of β-cells after streptozotocin (STZ) treatment in tree shrews compared with Sprague-Dawley rats. Injury and regeneration of islet β-cells were observed using hematoxylin and eosin (HE) staining and immunohistochemical staining for insulin, glucagon, somatostatin and PDX-1. RESULTS Our data showed that in rats islet injury was most obvious on day 3 after injection, and islet morphologies were significantly restored by day 21. Regeneration of islet β-cells was very pronounced in rats, and mainly involved regeneration of centro-acinar cells and transformation of extra-islet ductal cells. In tree shrews, the regeneration of islet β-cells was not as significant. On days 3 and 7, only scattered regenerated cells were observed in the remaining islets. Further, no regeneration of centro-acinar cells was observed. CONCLUSION The results suggest that the repair mechanism of islet β-cells in tree shrews is similar to that of humans.
Collapse
Affiliation(s)
- Yu‐Qiong Zhao
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Ya‐Qian Liu
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Ji‐Fang Yuan
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Xin Dai
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Miao‐Miao Niu
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Xiao‐Mei Sun
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - De‐Xuan Kuang
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - Wen‐Guang Wang
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - Pin‐Fen Tong
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - Na Li
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - Lei Xiang
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Yun‐Xiao Jia
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
| | - Jie‐Jie Dai
- The Institute of Medical BiologyThe Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious DiseasesCenter of Tree Shrew Germplasm ResourcesKunmingChina
| | - Hua Chen
- Chinese PLA General HospitalLaboratory Animal CenterBeijingChina
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Li X, Tao Y, Liu J, Lu W, Liu H, Dai J. Optimized protocol of RBCs lysis for immunophenotypic analysis in the peripheral blood of tree shrew. Acta Biochim Biophys Sin (Shanghai) 2018; 50:428-431. [PMID: 29444211 DOI: 10.1093/abbs/gmy008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xintong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School,Infection and Immunity Laboratory, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Yunnan Key Lab for Preventing and Controlling the Insect-borne Infectious Diseases, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming National High-level Biosafety Primate Research Center, Kunming 650118, China
| | - Yufen Tao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School,Infection and Immunity Laboratory, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Yunnan Key Lab for Preventing and Controlling the Insect-borne Infectious Diseases, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming National High-level Biosafety Primate Research Center, Kunming 650118, China
| | - Jiansheng Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School,Infection and Immunity Laboratory, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Yunnan Key Lab for Preventing and Controlling the Insect-borne Infectious Diseases, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming National High-level Biosafety Primate Research Center, Kunming 650118, China
| | - Wei Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School,Infection and Immunity Laboratory, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Yunnan Key Lab for Preventing and Controlling the Insect-borne Infectious Diseases, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming National High-level Biosafety Primate Research Center, Kunming 650118, China
| | - Hongqi Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School,Infection and Immunity Laboratory, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Yunnan Key Lab for Preventing and Controlling the Insect-borne Infectious Diseases, Kunming 650118, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming National High-level Biosafety Primate Research Center, Kunming 650118, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical School, Kunming 650118, China
| |
Collapse
|
9
|
Jiang LP, Shen QS, Yang CP, Chen YB. Establishment of basal cell carcinoma animal model in Chinese tree shrew ( Tupaia belangeri chinensis). Zool Res 2018; 38:180-190. [PMID: 28825448 PMCID: PMC5571474 DOI: 10.24272/j.issn.2095-8137.2017.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer worldwide, with incidence rates continuing to increase. Ultraviolet radiation is the major environmental risk factor and dysregulation of the Hedgehog (Hh) signaling pathway has been identified in most BCCs. The treatment of locally advanced and metastatic BBCs is still a challenge and requires a better animal model than the widely used rodents for drug development and testing. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates, bearing many physiological and biochemical advantages over rodents for characterizing human diseases. Here, we successfully established a Chinese tree shrew BCC model by infecting tail skins with lentiviral SmoA1, an active form of Smoothened (Smo) used to constitutively activate the Hh signaling pathway. The pathological characteristics were verified by immunohistochemical analysis. Interestingly, BCC progress was greatly enhanced by the combined usage of lentiviral SmoA1 and shRNA targeting Chinese tree shrew p53. This work provides a useful animal model for further BCC studies and future drug discoveries.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Qiu-Shuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Cui-Ping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| | - Yong-Bin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| |
Collapse
|
10
|
Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, Bi R, Ji S, Ma YH, Nie WH, Lv LB, Yao YG, Zhao XD, Zheng P. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Res 2016; 27:241-252. [PMID: 28008926 DOI: 10.1038/cr.2016.156] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
Tree shrews have a close relationship to primates and have many advantages over rodents in biomedical research. However, the lack of gene manipulation methods has hindered the wider use of this animal. Spermatogonial stem cells (SSCs) have been successfully expanded in culture to permit sophisticated gene editing in the mouse and rat. Here, we describe a culture system for the long-term expansion of tree shrew SSCs without the loss of stem cell properties. In our study, thymus cell antigen 1 was used to enrich tree shrew SSCs. RNA-sequencing analysis revealed that the Wnt/β-catenin signaling pathway was active in undifferentiated SSCs, but was downregulated upon the initiation of SSC differentiation. Exposure of tree shrew primary SSCs to recombinant Wnt3a protein during the initial passages of culture enhanced the survival of SSCs. Use of tree shrew Sertoli cells, but not mouse embryonic fibroblasts, as feeder was found to be necessary for tree shrew SSC proliferation, leading to a robust cell expansion and long-term culture. The expanded tree shrew SSCs were transfected with enhanced green fluorescent protein (EGFP)-expressing lentiviral vectors. After transplantation into sterilized adult male tree shrew's testes, the EGFP-tagged SSCs were able to restore spermatogenesis and successfully generate transgenic offspring. Moreover, these SSCs were suitable for the CRISPR/Cas9-mediated gene modification. The development of a culture system to expand tree shrew SSCs in combination with a gene editing approach paves the way for precise genome manipulation using the tree shrew.
Collapse
Affiliation(s)
- Chao-Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lan-Zhen Yan
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Zan Ban
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiu Tu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shuang Ji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Hua Ma
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Hui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Long-Bao Lv
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
11
|
Xiao RY, Hao J, Ding YH, Che YY, Zou XJ, Liang B. Transcriptome Profile Reveals that Pu-Erh Tea Represses the Expression of Vitellogenin Family to Reduce Fat Accumulation in Caenorhabditis elegans. Molecules 2016; 21:E1379. [PMID: 27763516 PMCID: PMC6274137 DOI: 10.3390/molecules21101379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family (vit-1, vit-2, vit-3, vit-4 and vit-5) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616), vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit(vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.
Collapse
Affiliation(s)
- Ru-Yue Xiao
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, #24Heping Road, Harbin 150040, China.
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yi-Hong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yan-Yun Che
- Pharmaceutical College, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|