1
|
Ponnusamy N, Arumugam M. Interaction of Host Pattern Recognition Receptors (PRRs) with Mycobacterium Tuberculosis and Ayurvedic Management of Tuberculosis: A Systemic Approach. Infect Disord Drug Targets 2022; 22:e130921196420. [PMID: 34517809 DOI: 10.2174/1871526521666210913110834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb), infects the lungs' alveolar surfaces through aerosol droplets. At this stage, the disease progression may have many consequences, determined primarily by the reactions of the human immune system. However, one approach will be to more actively integrate the immune system, especially the pattern recognition receptor (PRR) systems of the host, which notices pathogen-associated molecular patterns (PAMPs) of Mtb. Several types of PRRs are involved in the detection of Mtb, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), Dendritic cell (DC) -specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), Mannose receptor (MR), and NOD-like receptors (NLRs) related to inflammasome activation. In this study, we focus on reviewing the Mtb pathophysiology and interaction of host PPRs with Mtb as well as adverse drug effects of anti-tuberculosis drugs (ATDs) and systematic TB treatment via Ayurvedic medicine.
Collapse
Affiliation(s)
- Nirmaladevi Ponnusamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
2
|
Sarangi A, Das BS, Patnaik G, Sarkar S, Debnath M, Mohan M, Bhattacharya D. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. J Appl Microbiol 2021; 131:1578-1599. [PMID: 33772980 DOI: 10.1111/jam.15088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases of human civilization. Approximately one-third of global population is latently infected with the TB pathogen Mycobacterium tuberculosis (M.tb). The discovery of anti-TB antibiotics leads to decline in death rate of TB. However, the evolution of antibiotic-resistant M.tb-strain and the resurgence of different immune-compromised diseases re-escalated the death rate of TB. WHO has already cautioned about the chances of pandemic situation in TB endemic countries until the discovery of new anti-tubercular drugs, that is, the need of the hour. Analysing the pathogenesis of TB, it was found that M.tb evades the host by altering the balance of immune response and affects either by killing the cells or by creating inflammation. In the pre-antibiotic era, traditional medicines were only therapeutic measures for different infectious diseases including tuberculosis. The ancient literatures of India or ample Indian traditional knowledge and ethnomedicinal practices are evidence for the treatment of TB using different indigenous plants. However, in the light of modern scientific approach, anti-TB effects of those plants and their bioactive molecules were not established thoroughly. In this review, focus has been given on five bioactive molecules of different traditionally used Indian ethnomedicinal plants for treatment of TB or TB-like symptom. These compounds are also validated with proper identification and their mode of action with modern scientific approaches. The effectiveness of these molecules for sensitive or drug-resistant TB pathogen in clinical or preclinical studies was also evaluated. Thus, our specific aim is to highlight such scientifically validated bioactive compounds having anti-mycobacterial and immunomodulatory activity for future use as medicine or adjunct-therapeutic molecule for TB management.
Collapse
Affiliation(s)
- A Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| | - B S Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| | - G Patnaik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - S Sarkar
- Barsal High School, Rampurhat, West Bengal, India
| | - M Debnath
- Panskura Banamali College (Autonomous), Vidyasagar University, Panskura, West Bengal, India
| | - M Mohan
- ICMR-National Institute of Malarial Research (NIMR), New Delhi, India
| | - D Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J, Sharifi-Rad R, Setzer WN, Sharifi-Rad M, Kobarfard F, Rahman AU, Choudhary MI, Ata A, Iriti M. Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 2020; 44:107629. [PMID: 32896577 DOI: 10.1016/j.biotechadv.2020.107629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
Abstract
Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20 months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Patrick Valere Tsouh Fokou
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra LG 581, Ghana; Antimicrobial Agents Unit, LPMPS, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Marzieh Sharifi-Rad
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Gail B Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Mohammad-Reza Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Temitope O Lawal
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA; Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Javid Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Razieh Sharifi-Rad
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663335 Zabol, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Iran
| | - Atta-Ur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex The University of Winnipeg, Winnipeg, Canada
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy.
| |
Collapse
|
4
|
Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J, Sharifi-Rad R, Setzer WN, Sharifi-Rad M, Kobarfard F, Rahman AU, Choudhary MI, Ata A, Iriti M. RETRACTED: Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 2017:S0734-9750(17)30077-0. [PMID: 28694178 DOI: 10.1016/j.biotechadv.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Patrick Valere Tsouh Fokou
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra LG 581, Ghana; Antimicrobial Agents Unit, LPMPS, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Marzieh Sharifi-Rad
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Gail B Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Mohammad-Reza Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Temitope O Lawal
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA; Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Javid Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Razieh Sharifi-Rad
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663335 Zabol, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Iran
| | - Atta-Ur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex The University of Winnipeg, Winnipeg, Canada
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy.
| |
Collapse
|
5
|
de Souza Pereira JJ, Pereira ADPC, Jandú JJB, da Paz JA, Crovella S, dos Santos Correia MT, de Azevêdo Silva J. Commiphora leptophloeos Phytochemical and Antimicrobial Characterization. Front Microbiol 2017; 8:52. [PMID: 28174564 PMCID: PMC5258698 DOI: 10.3389/fmicb.2017.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022] Open
Abstract
Commiphora leptophloeos is a plant specie usually known for its medicinal purposes in local communities in Northeast Brazil. In order to evaluate its therapeutic potential, we aimed to determine the phytochemical and antimicrobial properties of C. leptophloeos extracts. Thin Layer Chromatography (TLC) was able to detect the presence of phenolic compounds, flavonoids and reducing sugars. Three phenolic compounds were identified by HPLC and described as Gallic, Chlorogenic and Protocatechuic acids. On the other hand, H1NMR analysis revealed the presence of hinokinin, a bioactive lignan further characterized in the present work. The minimum inhibitory concentration (MIC) values for hinokinin ranged from 0.0485 to 3.125 mg/mL in different S. aureus clinical isolates and showed a bactericidal activity against MRSA isolated from blood (MMC 0.40 mg/mL) and postoperative secretion (MMC = 3.125 mg/mL). C. leptophloeos extracts also showed antimicrobial activity against Mycobacterium species such as M. smegmatis (MIC = 12.5 mg/mL) and M. tuberculosis (MIC = 52 mg/mL). Additionally, we determined the toxicity of C. leptophloeos by in vitro HC50 tests with hemolytic activity detected of 313 ± 0.5 μg/mL. Our results showed that C. leptophloeos possesses inhibitory properties against MRSA as well as several other clinically important microorganisms. Furthermore, the present work is the first report of the presence of hinokinin in Commiphora genus.
Collapse
Affiliation(s)
- Jorge J. de Souza Pereira
- Department of Genetics, Federal University of PernambucoRecife, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of PernambucoRecife, Brazil
| | - Aline de P. C. Pereira
- Laboratory of Glycoproteins, Department of Biochemistry, Federal University of PernambucoRecife, Brazil
| | - Jannyson J. B. Jandú
- Laboratory of Glycoproteins, Department of Biochemistry, Federal University of PernambucoRecife, Brazil
| | - Josinete A. da Paz
- Department of Fundamental Chemistry, Federal University of PernambucoRecife, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of PernambucoRecife, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of PernambucoRecife, Brazil
| | | | - Jaqueline de Azevêdo Silva
- Department of Genetics, Federal University of PernambucoRecife, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of PernambucoRecife, Brazil
| |
Collapse
|