1
|
Song Q, Mao X, Jing M, Fu Y, Yan W. Pathophysiological role of BACH transcription factors in digestive system diseases. Front Physiol 2023; 14:1121353. [PMID: 37228820 PMCID: PMC10203417 DOI: 10.3389/fphys.2023.1121353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
BTB and CNC homologous (BACH) proteins, including BACH1 and BACH2, are transcription factors that are widely expressed in human tissues. BACH proteins form heterodimers with small musculoaponeurotic fibrosarcoma (MAF) proteins to suppress the transcription of target genes. Furthermore, BACH1 promotes the transcription of target genes. BACH proteins regulate physiological processes, such as the differentiation of B cells and T cells, mitochondrial function, and heme homeostasis as well as pathogenesis related to inflammation, oxidative-stress damage caused by drugs, toxicants, or infections; autoimmunity disorders; and cancer angiogenesis, epithelial-mesenchymal transition, chemotherapy resistance, progression, and metabolism. In this review, we discuss the function of BACH proteins in the digestive system, including the liver, gallbladder, esophagus, stomach, small and large intestines, and pancreas. BACH proteins directly target genes or indirectly regulate downstream molecules to promote or inhibit biological phenomena such as inflammation, tumor angiogenesis, and epithelial-mesenchymal transition. BACH proteins are also regulated by proteins, miRNAs, LncRNAs, labile iron, and positive and negative feedback. Additionally, we summarize a list of regulators targeting these proteins. Our review provides a reference for future studies on targeted drugs in digestive diseases.
Collapse
Affiliation(s)
- Qianben Song
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Mao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Occhiuto CJ, Moerland JA, Leal AS, Gallo KA, Liby KT. The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis. Mol Cells 2023; 46:176-186. [PMID: 36994476 PMCID: PMC10070161 DOI: 10.14348/molcells.2023.2191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/31/2023] Open
Abstract
The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ana S. Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Simultaneous Integrated Boost Volumetric Modulated Arc Therapy for Rectal Cancer: Long-Term Results after Protocol-Based Treatment. JOURNAL OF ONCOLOGY 2022; 2022:6986267. [PMID: 35437441 PMCID: PMC9012974 DOI: 10.1155/2022/6986267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Background Volumetric modulated arc therapy (VMAT) with simultaneous integrated boost (SIB) is an advanced form of radiotherapy (RT) technology. The purpose of this study was to report long-term treatment outcomes in patients with locally advanced rectal cancer undergoing VMAT-SIB based concurrent chemoradiotherapy (CRT). Methods Between January 2016 and January 2018, a total of 22 patients with operable stage II-III rectal adenocarcinoma were recruited for the pre-designed VMAT-SIB RT protocol. All patients underwent standard diagnostic and staging work-up. The RT target volumes included the following areas: PTV1 = mesorectum that contained gross tumors and enlarged lymph node regions and PTV2 = mesorectum and regional lymphatics from L4-5/S1 to 3-4 cm below the tumor or levator ani muscle, excluding PTV1. The VMAT-SIB dose prescription was as follows: PTV1 = 52.5 Gy/daily 2.1 Gy/25 fractions, PTV2 = 45 Gy/daily 1.8 Gy/25 fractions. Results The mean age of the study population was 64 (range, 18-84) years, and 15 (68.2%) patients were male. Radical operation (total mesorectal excision) was performed by either low anterior resection, ultralow anterior resection, or abdominal perineal resection. All five (22.7%) of the patients with confirmed increasing serum carcinoembryonic antigen (CEA) level at diagnosis showed normalization of serum CEA level after the planned treatment. Among 20 patients who underwent preoperative CRT and surgery, tumor down staging in T- and N-stages was achieved in 10 patients (50%) and 13 patients (65%), respectively, with 20% of ypT0/Tis. With a median follow-up of 54.2 (range, 22.6-61.1) months, the 5-year disease-free survival, overall survival, and local control rates were 64.6%, 81.8%, and 84.4%, respectively. Five patients developed distant metastasis and one developed local recurrence as a first event. Two cases with anastomosis site leakage, three with adhesive ileus, and two with abscess formation were observed during postoperative periods. Conclusions The current VMAT-SIB-based CRT protocol provided acceptable treatment and toxicity outcomes.
Collapse
|
5
|
Responsive Expression of MafF to β-Amyloid-Induced Oxidative Stress. DISEASE MARKERS 2020; 2020:8861358. [PMID: 33488846 PMCID: PMC7787795 DOI: 10.1155/2020/8861358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
The small musculoaponeurotic fibrosarcoma (sMaf) proteins MafF, MafG, and MafK are basic region leucine zipper- (bZIP-) type transcription factors and display tissue- or stimulus-specific expression patterns. As the oxidative stress reactive proteins, sMafs are implicated in various neurological disorders. In the present study, the expressions of sMafs were investigated across five databases gathering transcriptomic data from 74 Alzheimer's disease (AD) patients and 66 controls in the Gene Expression Omnibus (GEO) database. The expression of MafF was increased in the hippocampus of AD patients, which was negatively correlated with the expression of the glutamate cysteine ligase catalytic subunit (GCLC). Furthermore, MafF was significantly increased in patients with Braak stage V-VI, compared to those with Braak stage III-IV. β-Amyloid (Aβ), a strong inducer of oxidative stress, plays a crucial role in the pathogenesis of AD. The responsive expressions of sMafs to Aβ-induced oxidative stress were studied in the APP/PS1 mouse model of AD, Aβ intrahippocampal injection rats, and several human cell lines from different tissue origins. This study revealed that only the induction of MafF was accompanied with reduction of GCLC and glutathione (GSH). MafF knockdown suppressed the increase of GSH induced by Aβ. Among sMafs, MafF is the most responsive to Aβ-induced oxidative stress and might potentiate the inhibition of antioxidation. These results provide a better understanding of sMaf modulation in AD and highlight MafF as a potential therapeutic target in AD.
Collapse
|
6
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
7
|
Tang Z, Xu Z, Zhu X, Zhang J. New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun (Lond) 2020; 41:16-36. [PMID: 33174400 PMCID: PMC7819563 DOI: 10.1002/cac2.12112] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are abnormal cells that can reproduce and regenerate rapidly. They are characterized by unlimited proliferation, transformation and migration, and can destroy normal cells. To meet the needs for cell proliferation and migration, tumor cells acquire molecular materials and energy through unusual metabolic pathways as their metabolism is more vigorous than that of normal cells. Multiple carcinogenic signaling pathways eventually converge to regulate three major metabolic pathways in tumor cells, including glucose, lipid, and amino acid metabolism. The distinct metabolic signatures of cancer cells reflect that metabolic changes are indispensable for the genesis and development of tumor cells. In this review, we report the unique metabolic alterations in tumor cells which occur through various signaling axes, and present various modalities available for cancer diagnosis and clinical therapy. We further provide suggestions for the development of anti‐tumor therapeutic drugs.
Collapse
Affiliation(s)
- Zhenye Tang
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China
| | - Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China
| | - Jinfang Zhang
- Lingnan Medical Research Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, the First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P. R. China
| |
Collapse
|
8
|
Torrente L, Maan G, Oumkaltoum Rezig A, Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E, Saarela J, Bicciato S, Edwards J, Dinkova-Kostova AT, de la Vega L. High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules 2020; 10:E1365. [PMID: 32992842 PMCID: PMC7600603 DOI: 10.3390/biom10101365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant hyperactivation of nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) is a common event in many tumour types and associates with resistance to therapy and poor patient prognosis; however, its relevance in colorectal tumours is not well-established. Measuring the expression of surrogate genes for NRF2 activity in silico, in combination with validation in patients' samples, we show that the NRF2 pathway is upregulated in colorectal tumours and that high levels of nuclear NRF2 correlate with a poor patient prognosis. These results highlight the need to overcome the protection provided by NRF2 and present an opportunity to selectively kill cancer cells with hyperactive NRF2. Exploiting the CRISPR/Cas9 technology, we generated colorectal cancer cell lines with hyperactive NRF2 and used them to perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to either genetic or pharmacological activation. Our results show that hyperactivation of NRF2 in colorectal cancer cells might present a vulnerability that could potentially be therapeutically exploited by using the Aurora kinase inhibitor AT9283.
Collapse
Affiliation(s)
- Laura Torrente
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gunjit Maan
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Asma Oumkaltoum Rezig
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Angus Jackson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| |
Collapse
|
9
|
Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer 2019; 18:114. [PMID: 31269959 PMCID: PMC6607541 DOI: 10.1186/s12943-019-1043-x] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of death worldwide. Due to latent liver disease, late diagnosis, and nonresponse to systemic treatments, surgical resection and/or biopsy specimens are still generally considered as the gold standard by clinicians for clinical decision-making until now. Since the conventional tissue biopsy is invasive and contains small tissue samples, it is unable to represent tumor heterogeneity or monitor dynamic tumor progression. Therefore, it is imperative to find a new less invasive or noninvasive diagnostic strategy to detect HCC at an early stage and to monitor HCC recurrence. Over the past years, a new diagnostic concept known as “liquid biopsy” has emerged with substantial attention. Liquid biopsy is noninvasive and allows repeated analyses to monitor tumor recurrence, metastasis or treatment responses in real time. With the advanced development of new molecular techniques, HCC circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) detection have achieved interesting and encouraging results. In this review, we focus on the clinical applications of CTCs and ctDNA as key components of liquid biopsy in HCC patients.
Collapse
|
10
|
Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, Hanash SM, Levine H, Onuchic JN, Jolly MK. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol (Camb) 2019; 11:251-263. [PMID: 31329868 PMCID: PMC6686740 DOI: 10.1093/intbio/zyz021] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a key process implicated in cancer metastasis and therapy resistance. Recent studies have emphasized that cells can undergo partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype - a cornerstone of tumour aggressiveness and poor prognosis. These cells can have enhanced tumour-initiation potential as compared to purely epithelial or mesenchymal ones and can integrate the properties of cell-cell adhesion and motility that facilitates collective cell migration leading to clusters of circulating tumour cells (CTCs) - the prevalent mode of metastasis. Thus, identifying the molecular players that can enable cells to maintain a hybrid E/M phenotype is crucial to curb the metastatic load. Using an integrated computational-experimental approach, we show that the transcription factor NRF2 can prevent a complete EMT and instead stabilize a hybrid E/M phenotype. Knockdown of NRF2 in hybrid E/M non-small cell lung cancer cells H1975 and bladder cancer cells RT4 destabilized a hybrid E/M phenotype and compromised the ability to collectively migrate to close a wound in vitro. Notably, while NRF2 knockout simultaneously downregulated E-cadherin and ZEB-1, overexpression of NRF2 enriched for a hybrid E/M phenotype by simultaneously upregulating both E-cadherin and ZEB-1 in individual RT4 cells. Further, we predict that NRF2 is maximally expressed in hybrid E/M phenotype(s) and demonstrate that this biphasic dynamic arises from the interconnections among NRF2 and the EMT regulatory circuit. Finally, clinical records from multiple datasets suggest a correlation between a hybrid E/M phenotype, high levels of NRF2 and its targets and poor survival, further strengthening the emerging notion that hybrid E/M phenotype(s) may occupy the 'metastatic sweet spot'.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
- Current address: Department of Biochemistry, All India Institute of Medical Sciences, Nagpur, India
| | | | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Julian P Casabar
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, Moretti R, Gazzin S. Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. Int J Mol Sci 2019; 20:2224. [PMID: 31064126 PMCID: PMC6539377 DOI: 10.3390/ijms20092224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
The current treatments of Parkinson disease (PD) are ineffective mainly due to the poor understanding of the early events causing the decline of dopaminergic neurons (DOPAn). To overcome this problem, slow progressively degenerating models of PD allowing the study of the pre-clinical phase are crucial. We recreated in a short ex vivo time scale (96 h) all the features of human PD (needing dozens of years) by challenging organotypic culture of rat substantia nigra with low doses of rotenone. Thus, taking advantage of the existent knowledge, the model was used to perform a time-dependent comparative study of the principal possible causative molecular mechanisms undergoing DOPAn demise. Alteration in the redox state and inflammation started at 3 h, preceding the reduction in DOPAn number (pre-diagnosis phase). The number of DOPAn declined to levels compatible with diagnosis only at 12 h. The decline was accompanied by a persistent inflammation and redox imbalance. Significant microglia activation, apoptosis, a reduction in dopamine vesicle transporters, and the ubiquitination of misfolded protein clearance pathways were late (96 h, consequential) events. The work suggests inflammation and redox imbalance as simultaneous early mechanisms undergoing DOPAn sufferance, to be targeted for a causative treatment aimed to stop/delay PD.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | | | - Simone Tuniz
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Emanuela Fioriti
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| |
Collapse
|
12
|
Davies KJA, Forman HJ. Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med 2019; 134:708-714. [PMID: 30695691 PMCID: PMC6588462 DOI: 10.1016/j.freeradbiomed.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/05/2023]
Abstract
The Keap1-Nrf2 signal transduction pathway plays a major role in oxidant and electrophile induction of adaptive homeostasis that transiently and reversibly increases cellular and organismal protection from stress. By expanding (and then contracting) the normal homeostatic range of expression of stress-protective genes, Nrf2 allows us to cope with fluctuations in stress levels. Two major inhibitors of Nrf2 are Bach1 and c-Myc which normally serve the important function of turning off adaptation when appropriate. We have found, however, that both Bach1 and c-Myc levels increase substantially with age and that older human cells, worms, flies, and mice loose Nrf2-dependent signaling and adaptive homeostasis. Nrf2 has also been linked with increased risk of cancers, and cancer incidence certainly increases with age. Here we propose that the age-dependent increase in Bach1 and c-Myc may actually cause the age-dependent decline in Nrf2 signaling and adaptive homeostasis, and that this is a coordinated attempt to minimize the age-dependent increase in cancer incidence. In other words, we may trade off adaptive homeostasis for a lower risk of cancer by increasing Bach1 and c-Myc in ageing.
Collapse
Affiliation(s)
- Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
13
|
Gao L, Yuan F, Che G, Xiao X, Nie X, Wang Y, Jia J, Kong AN, Zhang L. Epigenetic modifications but not genetic polymorphisms regulate KEAP1 expression in colorectal cancer. J Cell Biochem 2019; 120:12311-12320. [PMID: 30825237 DOI: 10.1002/jcb.28495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Kelch-like ECH-associated protein 1 (KEAP1), as a negative regulator of nuclear factor erythroid 2 like 2 ( NRF2), plays a pivotal role in NRF2 signaling pathway and involves in tumorigenesis. Polymorphisms and methylation in gene promoter region may influence its expression and be related to cancer susceptibility. In this study, we examined the effect of the KEAP1-NRF2 interaction on the risk of colorectal cancer (CRC). The polymorphisms of NRF2 and KEAP1 were genotyped using the improved multiplex ligase detection reaction assay. KEAP1 promoter methylation and histone modification were analyzed using bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) assay, respectively. The KEAP1 rs1048290 CC genotype and C allele were associated with increased risks of CRC (CC vs GG: odds ratio [OR] = 1.39; 95% confidence interval [CI], 1.08-1.78; CC vs GG/GC: OR = 1.29; 95% CI, 1.05-1.58; C vs G: OR = 1.18; 95% CI, 1.04-1.34). The rs1048290-rs11545829 GT haplotype was associated with a reduced risk of CRC. KEAP1-NRF2 interaction analysis revealed that the rs6721961, rs35652124, rs1048290, and rs11545829 conferred the susceptibility to CRC. The hypermethylation of KEAP1 promoter resulted in lower levels of KEAP1 messenger RNA (mRNA). After treatment with 5-aza-2'-deoxycytidine/trichostatin A, KEAP1 promoter methylation was decreased and KEAP1 mRNA levels were increased. ChIP-quantitative polymerase chain reaction results showed an enhanced enrichment of H3K4Me3 and H3K27Ac to the promoter of KEAP1. In vitro methylation analysis showed that the methylated plasmid decreased the transcriptional activity by 70%-84%. These findings suggest that the KEAP1- NRF2 pathway could potentially impact CRC risk and the downregulation of KEAP1 could be explained in part by epigenetic modifications.
Collapse
Affiliation(s)
- Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Fang Yuan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Guanglu Che
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xinwen Nie
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Jia
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Sebastián VP, Salazar GA, Coronado-Arrázola I, Schultz BM, Vallejos OP, Berkowitz L, Álvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol 2018; 9:1956. [PMID: 30258436 PMCID: PMC6143658 DOI: 10.3389/fimmu.2018.01956] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Heme Oxygenase 1 (HMOX1) is an enzyme that catalyzes the reaction that degrades the heme group contained in several important proteins, such as hemoglobin, myoglobin, and cytochrome p450. The enzymatic reaction catalyzed by HMOX1 generates Fe2+, biliverdin and CO. It has been shown that HMOX1 activity and the by-product CO can downmodulate the damaging immune response in several models of intestinal inflammation as a result of pharmacological induction of HMOX1 expression and the administration of non-toxic amounts of CO. Inflammatory Bowel Diseases, which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), are one of the most studied ailments associated to HMOX1 effects. However, microbiota imbalances and infections are also important factors influencing the occurrence of acute and chronic intestinal inflammation, where HMOX1 activity may play a major role. As part of this article we discuss the immune modulatory capacity of HMOX1 during IBD, as well during the infections and interactions with the microbiota that contribute to this inflammatory disease.
Collapse
Affiliation(s)
- Valentina P. Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M. Álvarez-Lobos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Chang LC, Fan CW, Tseng WK, Chein HP, Hsieh TY, Chen JR, Hwang CC, Hua CC. The ratio of thioredoxin/Keap1 protein level is a predictor of distant metastasis in colorectal cancer. Biomark Med 2017; 11:1103-1111. [PMID: 29053012 DOI: 10.2217/bmm-2017-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Thioredoxin can reduce the cysteine group of Keap1 which could induce proteasome degradation of Nrf2, PGAM5 and Bcl-xL. Nrf2 regulates redox balance and Bcl-xL is anti-apoptotic and both are important in tumor progression. Methods: The protein levels of Keap1, thioredoxin, PGAM5 and Bcl-xL in the normal and tumor tissues of 64 subjects with colorectal cancer (CRC) were determined by western blot. Results: The tumor had higher Keap1 but lower PGAM5s and Bcl-xL protein expression than the normal tissue. The ratio of thioredoxin/Keap1 protein level in the normal (OR: 0.12; 95% CI: 0.02–0.83) or tumor tissue (OR: 0.17; 95% CI: 0.03–0.89) was a negative predictor for distant metastasis in CRC. Conclusion: Keap1-mediated degradation of PGAM5 and Bcl-xL may be active in CRC. The ratio of thioredoxin/Keap1 protein level may be useful for suggesting distant metastasis in CRC.
Collapse
Affiliation(s)
- Liang-Che Chang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Chung-Wei Fan
- Division of Colon & Rectal Surgery, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Wen-Ko Tseng
- Division of Colon & Rectal Surgery, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Hui-Ping Chein
- Department of Pathology, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Tsan-Yu Hsieh
- Department of Pathology, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Cheng-Cheng Hwang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| | - Chung-Ching Hua
- Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung & Chang Gung University, 222 Maijin Road, Keelung 204, Taiwan, Republic of China
| |
Collapse
|