1
|
Wu ML, Yang ZM, Dong HC, Zhang H, Zheng X, Yuan B, Yang Y, Liu J, Li PN. Maggot extract accelerates skin wound healing of diabetic rats via enhancing STAT3 signaling. PLoS One 2024; 19:e0309903. [PMID: 39240845 PMCID: PMC11379160 DOI: 10.1371/journal.pone.0309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND Diabetic skin wound is a complex problem due to the disruption of normal repairing program and lack of effective remedy. Lucilia sericata larvae (maggot) is a folk method to treat chronic skin wound, while its therapeutic effects on that caused by diabetic remains unknown. OBJECTIVE This study aims to investigate the therapeutic effects of maggot extract (M.E.) on diabetic skin wound and its molecular mechanism by establishing the skin wound model of diabetic Sprague Dawley (SD) rats. METHODS Diabetic model was established by injecting intraperitoneally streptozotocin in SD rats under specific pathogen-free (SPF) conditions. The rat fasting blood glucose values were ≧16.7 mmol/L 72 hours after intraperitoneal streptozotocin (60mg/kg body weight) injection. The rats were divided into five groups (n = 10/group): normal group: normal SD rats without any treatment, diabetic blank group: the diabetic rats without any treatment, Vaseline group: the diabetic rats dressed with Vaseline, recombinant human epidermal-growth-factor (rhEGF) group: the diabetic rats dressed with a mixture of Vaseline and 200 μg/g rhEGF, M.E. group: the diabetic rats dressed with a mixture of Vaseline and 150 μg/ml maggot extract. The round open wounds (1.0 cm in diameter) down to the muscle fascia were made on both sides of rat dorsa by removing the skin layer (epidermis and dermis) and were daily photographed for calculating their healing rates. Hematoxylin-eosin (HE) and Masson's trichrome staining were performed on skin wound sections to analyze re-epithelialization and granulation tissue formation. Immunohistochemical (IHC), immunofluorescent (IF) stainings and Western blotting were conducted to analyze the statuses of STAT3 signaling. RESULTS The average wound healing rates on the 14th day were 91.7% in the normal, 79.6% in M.E., 71% in rhEGF, 55.1% in vaseline and 43.3% in the diabetes blank group. Morphological staining showed more active granulation tissue formation, re-epithelialization and neovascularization in M.E.-group than those in the blank and the vaseline-treated groups. Decreased p-STAT3 nuclear tranlocation and down-regulated Bcl-2, CyclinD1 and vascular endothelial growth factor (VEGF) expression were evidenced in the diabetic rats, which could be improved by rhEGF and especially M.E. CONCLUSION Maggot extract would be an alternative and/or adjuvant candidate for the better management of diabetic skin wounds because of its activity in enhancing STAT3 activation.
Collapse
Affiliation(s)
- Mo-Li Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhe-Ming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hai-Chao Dong
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hong Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Yuan
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Song M, Bai X, Wang D, Wang Q, Pan L, He P, Gong Y, Sun X, Xu X, Che J, Wang S. Combined application of moist exposed burn ointment and maggot therapy in wound healing. J Wound Care 2022; 31:S41-S52. [DOI: 10.12968/jowc.2022.31.sup10.s41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: Hard-to-heal wounds are a global health challenge, and effective treatments are still lacking. Moist exposed burn ointment (MEBO) and maggots are traditional treatments for promoting wound healing. This study was a preliminary exploration of combined maggot therapy and MEBO in the treatment of hard-to-heal wounds. Method: A coexistence experiment was conducted to determine the survival rates of maggots in MEBO. The maggots were placed in two different existence conditions: one set in MEBO (MEBO group), and another set as the control group (no MEBO) to compare survival rates. Case reports describe the use of the combined application of MEBO and maggots in the treatment of patients with hard-to-heal wounds. Results: The coexistence experiment indicated that maggots in the MEBO group had a higher survival rate. From the therapeutic effect of the clinical cases (n=7), the combined application was safe and effective, with all the reported wounds eventually healing. Conclusion: Based on the findings of this study, we believe the combined application of MEBO and maggots is a promising way of promoting wound healing. Further studies and clinical trials are needed to elucidate the mechanism of the combined application in promoting wound healing and to more persuasively clarify the therapeutic effect.
Collapse
Affiliation(s)
- Mingzhi Song
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 2 Department of Orthopaedics, the Third Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaodong Bai
- 3 Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Deyu Wang
- 4 Department of Burn and Wound Repair Surgery, the Forth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Qingxin Wang
- 5 The Second Department of General Surgery, the Fifth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Liwen Pan
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 7 Surgical Clinic, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ping He
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 7 Surgical Clinic, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ying Gong
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaohong Sun
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaoguang Xu
- 8 Research Center of High Altitude Medicine, Naqu, Tibet, People's Republic of China
- 9 People's Hospital of Naqu Affiliated to Dalian Medical University, Naqu, Tibet, People's Republic of China
| | - Jianzhong Che
- 4 Department of Burn and Wound Repair Surgery, the Forth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Shouyu Wang
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 10 Dalian Runxi Technology Development Co. Ltd, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae). Genetica 2022; 150:379-394. [PMID: 36136258 DOI: 10.1007/s10709-022-00164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
Collapse
|
4
|
Investigation of Epidemiological Aspects of Cutaneous Leishmaniasis in Jahrom, Fars Province, Between 2015 and 2019. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Cutaneous leishmaniasis is one of the diseases caused by the Leishmania parasite, which is considered a health problem in Iran. Jahrom, a county in Fars province located in the south of Iran, is one of the endemic foci of cutaneous leishmaniasis. Objectives: The present study investigated the epidemiology of cutaneous leishmaniasis in Jahrom between 2015 and 2019. Methods: A descriptive-analytical study was performed to evaluate the epidemiology of cutaneous leishmaniasis in patients referred to the Jahrom Health Center between 2015 and 2019. Results: A total of 584 cases were identified, of which (347) 59.4% were males and (237) 40.6% were females. The acute cases were observed in all age groups, and the highest proportion was seen at less than 10 years of age. The numbers of patients with cutaneous leishmaniasis from 2015 to 2019 were 180, 88, 117, 108, and 91, respectively. Cutaneous leishmaniasis was more common in autumn and winter. The proportion was higher in males and urban inhabitants. There was a statistically significant difference between the genders and places of residence (P < 0.05). Also, the highest proportion of lesions was on the hands (48.8%). Conclusions: Based on the findings in Jahrom city, the proportion of the disease was higher in younger age groups, males, urban inhabitants, and autumn. The most common lesions were on the hands, feet, and face.
Collapse
|
5
|
Davis RJ, Belikoff EJ, Dickey AN, Scholl EH, Benoit JB, Scott MJ. Genome and transcriptome sequencing of the green bottle fly, Lucilia sericata, reveals underlying factors of sheep flystrike and maggot debridement therapy. Genomics 2021; 113:3978-3988. [PMID: 34619342 DOI: 10.1016/j.ygeno.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
The common green bottle blow fly Lucilia sericata (family, Calliphoridae) is widely used for maggot debridement therapy, which involves the application of sterile maggots to wounds. The larval excretions and secretions are important for consuming necrotic tissue and inhibiting bacterial growth in wounds of patients. Lucilia sericata is also of importance as a pest of sheep and in forensic studies to estimate a postmortem interval. Here we report the assembly of a 565.3 Mb genome from long read PacBio DNA sequencing of genomic DNA. The genome contains 14,704 predicted protein coding genes and 1709 non-coding genes. Targeted annotation and transcriptional analyses identified genes that are highly expressed in the larval salivary glands (secretions) and Malpighian tubules (excretions) under normal growth conditions and following heat stress. The genomic resources will underpin future genetic studies and in development of engineered strains for genetic control of L. sericata and for biotechnology-enhanced maggot therapy.
Collapse
Affiliation(s)
- Rebecca J Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Campus Box 7566, Raleigh, NC 27695-7566, USA.
| | - Elizabeth H Scholl
- Bioinformatics Research Center, North Carolina State University, Campus Box 7566, Raleigh, NC 27695-7566, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211, USA.
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
6
|
Tombulturk FK, Kanigur-Sultuybek G. A molecular approach to maggot debridement therapy with Lucilia sericata and its excretions/secretions in wound healing. Wound Repair Regen 2021; 29:1051-1061. [PMID: 34343386 DOI: 10.1111/wrr.12961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Chronic wounds caused by underlying physiological causes such as diabetic wounds, pressure ulcers, venous leg ulcers and infected wounds affect a significant portion of the population. In order to treat chronic wounds, a strong debridement, removal of necrotic tissue, elimination of infection and stimulation of granulation tissue are required. Maggot debridement therapy (MDT), which is an alternative treatment method based on history, has been used quite widely. MDT is an efficient, simple, cost-effective and reliable biosurgery method using mostly larvae of Lucilia sericata fly species. Larvae can both physically remove necrotic tissue from the wound site and stimulate wound healing by activating molecular processes in the wound area through the enzymes they secrete. The larvae can stimulate wound healing by activating molecular processes in the wound area through enzymes in their excretions/secretions (ES). Studies have shown that ES has antibacterial, antifungal, anti-inflammatory, angiogenic, proliferative, hemostatic and tissue-regenerating effects both in vivo and in vitro. It is suggested that these effects stimulate wound healing and accelerate wound healing by initiating a direct signal cascade with cells in the wound area. However, the enzymes and peptides in ES are mostly still undefined. Examining the molecular content of ES and the biological effects of these ingredients is quite important to illuminate the molecular mechanism underlying MDT. More importantly, ES has the potential to have positive effects on wound healing and to be used more as a therapeutic agent in the future, so it can be applied as an alternative to MDT in wound healing.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Turkey
| | - Gonul Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Li FF, Zhang J, Gao CC, Wang TY, Zhi LM, Wang J, Wang AP. [Influence of maggot excretions/secretions on the anti- Pseudomonas aeruginosa effect of neutrophils in patients with diabetic foot ulcer]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:413-419. [PMID: 33904289 PMCID: PMC11917336 DOI: 10.3760/cma.j.cn501120-20210312-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the effects of medical maggot excretions/secretions (ES) on neutrophils phagocytosis and bactericidal effect in patients with diabetic foot ulcer (DFU). Methods: The experimental research method was used. Thirty DFU patients (16 males and 14 females, aged (64±7) years)who were admitted to the Diabetes Foot Center, the Department of Endocrinology of Air Force Hospital of Eastern Theater Command from June to December 2020 and met the inclusion criteria were recruited. Discontinuous percoll gradient centrifugation method was used to separate the neutrophils. Cells from each patient were enrolled into normal saline group and maggot ES group (30 wells in each group), respectively; sterile normal saline and ES with a final mass concentration of 357 μg/mL (the same as below) were added, respectively. After 1 and 2 hour(s) of culture, the phagocytosis rate and phagocytic index of cells were observed and counted under Wright's staining. Ten patients were selected, then the cells of each patient were enrolled into Pseudomonas aeruginosa+neutrophils group and Pseudomonas aeruginosa+neutrophils+maggot ES group (10 wells in each group) and were treated corresponding, respectively. Pseudomonas aeruginosa alone group and Pseudomonas aeruginosa+maggot ES group (10 wells in each group) were set up respectively; Pseudomonas aeruginosa+RPMI 1640 culture medium+sterile normal saline and Pseudomonas aeruginosa+RPMI 1640 culture medium+maggot ES were added, respectively. After 2 hours of culture, the number of viable bacteria colony was counted by plate colony number method. Six, six, and three patients were selected respectively, and the cells of each patient were respectively enrolled into maggot ES group and normal saline group (6, 6, and 3 wells in each group, respectively) and treated accordingly. After 6 hours of culture, real-time fluorescent quantitative reverse transcription polymerase chain reaction was used to detect the mRNA expressions of interleukin 1β (IL-1β), IL-6, and lysozyme in cells, the content of IL-1β and IL-6 in cell culture supernatant were determined by enzyme-linked immunosorbent assay, and the positive cells expressing lysozyme were observed with immunofluorescence method. Data were statistically analyzed with one-way analysis of variance, paired sample t test, least significant difference test, and Wilcoxon rank sum test. Results: After 1 hour of culture, the phagocytosis rate and phagocytic index of cells in maggot ES group (53.5% (49.7%, 58.0%) and 3.18 (2.96, 3.32)) were similar to 52.0% (47.5%, 55.2%) and 3.15 (2.96, 3.25) of normal saline group (Z=-1.701, -1.092, P>0.05). After 2 hours of culture, the phagocytosis rate and phagocytic index of cells in maggot ES group (70.0% (66.7%, 72.0%) and 4.47 (4.22, 4.96)) were significantly higher than 58.0% (55.0%, 60.0%) and 4.11 (3.52, 4.24) in normal saline group (Z=-4.786, -4.279, P<0.01). After 2 hours of culture, the number of viable bacteria colony in Pseudomonas aeruginosa+neutrophils group was significantly lower than that in Pseudomonas aeruginosa alone group (P<0.01), and the number of viable bacteria colony in Pseudomonas aeruginosa+neutrophils+maggot ES group was significantly lower than that in Pseudomonas aeruginosa+maggot ES group and Pseudomonas aeruginosa+neutrophils group (P<0.01). After 6 hours of culture, the mRNA expressions of IL-1β, IL-6, and lysozyme of cells in maggot ES group were significantly higher those in normal saline group (t=-3.279, -4.273, -4.763, P<0.05 or P<0.01); the concent of IL-1β and IL-6 in cell culture supernatant of maggot ES group were significantly higher than those of normal saline group (t=-9.526, -6.447, P<0.01); there were significantly more positive cells expressing lysozyme in maggot ES group than in normal saline group. Conclusions: Maggot ES can enhance the phagocytosis and bactericidal effect of neutrophils on Pseudomonas aeruginosa by promoting the production of neutrophils immune defense related cytokines and lysozyme in DFU patients.
Collapse
Affiliation(s)
- F F Li
- Department of Endocrinology, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - J Zhang
- Diabetes Foot Center, Department of Endocrinology, Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - C C Gao
- Diabetes Foot Center, Department of Endocrinology, Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - T Y Wang
- Diabetes Foot Center, Department of Endocrinology, Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - L M Zhi
- Department of Translational Medicine, Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - J Wang
- Department of Translational Medicine, Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - A P Wang
- Department of Endocrinology, the Second Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
8
|
Wang TY, Wang W, Li FF, Chen YC, Jiang D, Chen YD, Yang H, Liu L, Lu M, Sun JS, Gu DM, Wang J, Wang AP. Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a - TSP-1 axis. Diabetes Res Clin Pract 2020; 165:108140. [PMID: 32277954 DOI: 10.1016/j.diabres.2020.108140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS The impaired angiogenesis is one of the main factors affecting the healing of diabetic foot ulcer (DFU) wounds. Maggot debridement therapy (MDT) promotes granulation tissue growth and angiogenesis during DFU wound healing. Non-coding microRNAs can also promote local angiogenesis in DFU wounds by regulating wound repairing related gene expression. The purpose of this study was to investigate the mechanism of microRNAs in MDT promoting DFU wound angiogenesis. METHODS In this study, we applied MDT to treat DFU wound tissue and detect the expression of the miR-17-92 cluster. In vitro experiments, human umbilical vein endothelial cells (HUVECs) were treated with maggot excretions/secretions (ES), the miR-17-92 cluster and the predicted target gene expression were measured. Tube formation assay and cell scratch assay were performed when inhibition of miR-18a/19a or overexpression of thrombospondin-1 (TSP-1) were used in this study. RESULTS miR-18a/19a transcription significantly up-regulated and TSP-1 expression down-regulated in patients wound tissue and in HUVECs. Inhibition of miR-18a/19a or overexpression of TSP-1 partially blocked the migration and tube formation ability stimulated by ES. CONCLUSION Targeted activation of miR-18a/19a transcription levels and subsequent regulation of TSP-1 expression may be a novel therapeutic strategy for DFU.
Collapse
Affiliation(s)
- Tian-Yuan Wang
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Wei Wang
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Fei-Fei Li
- Endocrinology Department, The Second Hospital of Anhui Medical University, No.678 Furong Road, Hefei 230601, China.
| | - Yin-Chen Chen
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Dong Jiang
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Yue-Dong Chen
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Hui Yang
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Lan Liu
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Meng Lu
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Jin-Shan Sun
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Dong-Mei Gu
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Jing Wang
- Translational medicine center, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| | - Ai-Ping Wang
- Endocrinology Department, Air Force Hospital of Eastern Theater Command, No.1 Malu Road, Nanjing 210002, China.
| |
Collapse
|
9
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
10
|
Lemke S, Vilcinskas A. European Medicinal Leeches-New Roles in Modern Medicine. Biomedicines 2020; 8:E99. [PMID: 32349294 PMCID: PMC7277884 DOI: 10.3390/biomedicines8050099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Before the advent of modern medicine, natural resources were widely used by indigenous populations for the prevention and treatment of diseases. The associated knowledge, collectively described as folk medicine or traditional medicine, was largely based on trial-and-error testing of plant extracts (herbal remedies) and the use of invertebrates, particularly medicinal maggots of the blowfly Lucilia sericata and blood-sucking leeches. The widespread use of traditional medicine in the West declined as scientific advances allowed reproducible testing under controlled conditions and gave rise to the modern fields of biomedical research and pharmacology. However, many drugs are still derived from natural resources, and interest in traditional medicine has been renewed by the ability of researchers to investigate the medical potential of diverse species by high-throughput screening. Likewise, researchers are starting to look again at the benefits of maggot and leech therapy, based on the hypothesis that the use of such animals in traditional medicine is likely to reflect the presence of specific bioactive molecules that can be developed as drug leads. In this review, we consider the modern medical benefits of European medicinal leeches based on the systematic screening of their salivary proteins.
Collapse
Affiliation(s)
- Sarah Lemke
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany;
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Bioresources, Ohlebergsweg 12, D-35392 Giessen, Germany
| |
Collapse
|
11
|
Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New Insights Into Culturable and Unculturable Bacteria Across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Front Microbiol 2020; 11:505. [PMID: 32322242 PMCID: PMC7156559 DOI: 10.3389/fmicb.2020.00505] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Because of the nutritional ecology of dung- and carrion-feeding, bacteria are the integral part of Lucilia sericata life cycle. Nevertheless, the disinfected larvae of the blowfly are applied to treat human chronic wounds in a biosurgery named maggot debridement therapy (MDT). To realize the effects of location/diet on the gut bacteria, to infer the role of bacteria in the blowfly ecology plus in the MDT process, and to disclose bacteria circulating horizontally in and vertically between generations, bacterial communities associated with L. sericata specimens from various sources were investigated using culture-based and culture-independent methods. In total, 265 bacteria, including 20 families, 28 genera, and 40 species, were identified in many sources of the L. sericata. Culture-dependent method identified a number of 144 bacterial isolates, including 21 species, in flies reared in an insectary; specimens were collected from the field, and third-instar larvae retrieved from chronic wounds of patients. Metagenetic approach exposed the occurrences of 121 operational taxonomic units comprising of 32 bacterial species from immature and adult stages of L. sericata. Gammaproteobacteria was distinguished as the dominant class of bacteria by both methods. Bacteria came into the life cycle of L. sericata over the foods and transovarially infected eggs. Enterococcus faecalis, Myroides phaeus, Proteus species, Providencia vermicola, and Serratia marcescens were exchanged among individuals via transstadial transmission. Factors, including diets, feeding status, identification tool, gut compartment, and life stage, governed the bacteria species. Herein, we reemphasized that L. sericata is thoroughly connected to the bacteria both in numerous gut compartments and in different life stages. Among all, transstadially transmitted bacteria are underlined, indicating the lack of antagonistic effect of the larval excretions/secretions on these resident bacteria. While the culture-dependent method generated useful data on the viable aerobic gut bacteria, metagenomic method enabled us to identify bacteria directly from the tissues without any need for cultivation and to facilitate the identification of anaerobic and unculturable bacteria. These findings are planned to pave the way for further research to determine the role of each bacterial species/strain in the insect ecology, as well as in antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities.
Collapse
Affiliation(s)
- Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nahid Ahmadi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Soroushzadeh
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, Vilcinskas A. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J Antimicrob Chemother 2020; 74:96-107. [PMID: 30272195 PMCID: PMC6322280 DOI: 10.1093/jac/dky386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background The ability of MDR Gram-negative bacteria to evade even antibiotics of last resort is a severe global challenge. The development pipeline for conventional antibiotics cannot address this issue, but antimicrobial peptides (AMPs) offer an alternative solution. Objectives Two insect-derived AMPs (LS-sarcotoxin and LS-stomoxyn) were profiled to assess their suitability for systemic application in humans. Methods The peptides were tested against an extended panel of 114 clinical MDR Gram-negative bacterial isolates followed by time–kill analysis, interaction studies and assays to determine the likelihood of emerging resistance. In further in vitro studies we addressed cytotoxicity, cardiotoxicity and off-target interactions. In addition, an in vivo tolerability and pharmacokinetic study in mice was performed. Results LS-sarcotoxin and LS-stomoxyn showed potent and selective activity against Gram-negative bacteria and no cross-resistance with carbapenems, fluoroquinolones or aminoglycosides. Peptide concentrations of 4 or 8 mg/L inhibited 90% of the clinical MDR isolates of Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Salmonella enterica isolates tested. The ‘all-d’ homologues of the peptides displayed markedly reduced activity, indicating a chiral target. Pharmacological profiling revealed a good in vitro therapeutic index, no cytotoxicity or cardiotoxicity, an inconspicuous broad-panel off-target profile, and no acute toxicity in mice at 10 mg/kg. In mouse pharmacokinetic experiments LS-sarcotoxin and LS-stomoxyn plasma levels above the lower limit of quantification (1 and 0.25 mg/mL, respectively) were detected after 5 and 15 min, respectively. Conclusions LS-sarcotoxin and LS-stomoxyn are suitable as lead candidates for the development of novel antibiotics; however, their pharmacokinetic properties need to be improved for systemic administration.
Collapse
Affiliation(s)
- Rolf Hirsch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Jochen Wiesner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
| | - Alexander Marker
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Yvonne Pfeifer
- Department 1 – Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Peter E Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Gießen, Germany
- Corresponding author. Tel: +49 641 99 39500; E-mail: orcid.org/0000-0001-8276-4968
| |
Collapse
|
13
|
Alipour H, Raz A, Dinparast Djadid N, Zakeri S. Expression of a New Recombinant Collagenase Protein of Lucilia Sericata in SF9 Insect Cell as a Potential Method for Wound Healing. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2429. [PMID: 32671126 PMCID: PMC7357693 DOI: 10.30498/ijb.2019.92707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Today, the use of maggot therapy has become widespread due to the increase in chronic ulcers in the world. The recombinant production of secreted enzymes from these larvae is a novel non-invasive method for the treatment of chronic ulcers. Lucilia Sericata (L. sericata) collagenase (MMP-1) has been expressed in insect cells. Collagenase is an enzyme that is widely used in clinical therapy and industry. It has been indicated that collagenase is expressed and secreted in salivary glands of L. sericata while using for maggot debridement therapy. OBJECTIVES In the present study we decided to produce the recombinant form of collagenase enzyme in Spodoptera frugiperda (SF9) insect cells using the baculovirus expression system (Bac-to-Bac). MATERIALS AND METHODS cloned the coding sequences (residues 494-1705) of L. sericata collagenase into the pFastBacHTA as donor plasmid. After transposition in the bacmid of DH10Bac host, the bacmid was transfected into the Sf9 cell line, then the expressed recombinant collagenase (MMP-1) was purified using the Ni-NTA agarose. RESULTS The recombinant protein was verified by Western blotting. Furthermore, the biological activity of purified protein was measured in the presence of its specific substrate and its inhibitor, which was 67 IU.mL-1 based on our results, it was revealed that the characterized gene in our previous study codes L. sericata collagenesa enzyme. CONCLUSION Considering to the broad applications of collagenase in medical sciences, for the first time, we cloned the L. sericata collagenase (MMP-1) gene into the insect cell line to establish a method for the expression and purification of L. sericata collagenase (MMP-1). The result help for preparing and designing a safe and versatile recombinant drug in future.
Collapse
Affiliation(s)
- Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
15
|
Díaz-Roa A, Patarroyo MA, Bello FJ, Da Silva PI. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol 2018; 9:2249. [PMID: 30323791 PMCID: PMC6172317 DOI: 10.3389/fmicb.2018.02249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022] Open
Abstract
Larval therapy (LT) is an alternative treatment for healing chronic wounds; its action is based on debridement, the removal of bacteria, and stimulating granulation tissue. The most important mechanism when using LT for combating infection depends on larval excretions and secretions (ES). Larvae are protected against infection by a spectrum of antimicrobial peptides (AMPs); special interest in AMPs has also risen regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during LT. Sarconesiopsis magellanica (Diptera: Calliphoridae) is a promising medically-important necrophagous fly. This article reports a small AMP being isolated from S. magellanica ES products for the first time; these products were obtained from third-instar larvae taken from a previously-established colony. ES were fractionated by RP-HPLC using C18 columns for the first analysis; the products were then lyophilised and their antimicrobial activity was characterized by incubation with different bacterial strains. These fractions' primary sequences were determined by mass spectrometry and de novo sequencing; five AMPs were obtained, the Sarconesin fraction was characterized and antibacterial activity was tested in different concentrations with minimum inhibitory concentrations starting at 1.2 μM. Potent inhibitory activity was shown against Gram-negative (Escherichia coli D31, E. coli DH5α, Salmonella enterica ATCC 13314, Pseudomonas aeruginosa 27853) and Gram-positive (Staphylococcus aureus ATCC 29213, S. epidermidis ATCC 12228, Micrococcus luteus A270) bacteria. Sarconesin has a significant similarity with Rho-family GTPases which are important in organelle development, cytoskeletal dynamics, cell movement, and wound repair. The data reported here indicated that Sarconesin could be an alternative candidate for use in therapeutics against Gram-negative and Gram-positive bacterial infections. Our study describes one peptide responsible for antibacterial activity when LT is being used. The results shown here support carrying out further experiments aimed at validating S. magellanica AMPs as novel resources for combating antibacterial resistance.
Collapse
Affiliation(s)
- Andrea Díaz-Roa
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Biomedical Sciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Felio J Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, Colombia.,Medicine Faculty, Universidad Antonio Nariño, Bogotá, Colombia
| | - Pedro I Da Silva
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil.,Biomedical Sciences Institute, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Pharmacological Properties of the Medical Maggot: A Novel Therapy Overview. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4934890. [PMID: 29853956 PMCID: PMC5960508 DOI: 10.1155/2018/4934890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/05/2018] [Indexed: 02/01/2023]
Abstract
In the last decade, maggot has been hailed as the miraculous “medicinal maggot” for its diverse properties, including antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities. The fact that maggots show so many beneficial properties has increased the interest in these tiny larvae dramatically. Whilst there is relatively abundant clinical evidence to demonstrate the success of maggots as debridement agents, not so much emphasis has been placed on the basic science evidence, which was a combination of physical and biochemical actions. This review differs from those earlier works in that it is undertaken to provide an update of the latest scientific basis published on maggot, particularly active ingredients within maggot excretions/secretions (ES). Further investigations should focus on the isolation, identification, recombination, transgenosis, and mass production of the beneficial molecules within maggots.
Collapse
|
17
|
Müller C, Vogel H, Heckel DG. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol Ecol 2017; 26:6370-6383. [DOI: 10.1111/mec.14349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 09/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Caroline Müller
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| | - Heiko Vogel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| | - David G. Heckel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|
18
|
Baumann A, Skaljac M, Lehmann R, Vilcinskas A, Franta Z. Urate Oxidase produced by Lucilia sericata medical maggots is localized in Malpighian tubes and facilitates allantoin production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:44-53. [PMID: 28235562 DOI: 10.1016/j.ibmb.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Lucilia sericata maggots are the only species currently approved for maggot debridement therapy (MDT), an alternative treatment for chronic and recalcitrant wounds. Maggots promote wound debridement, disinfection and healing by producing a complex mixture of proteins, peptides and low-molecular-weight compounds in their secretions and excretions, but the individual components are not well characterized at the molecular level. Here we investigated the purine catabolism pathway in L. sericata, focusing on the production of allantoin by Urate Oxidase (UO), which is thought to promote wound healing. We produced recombinant L. sericata UO in Escherichia coli, and characterized the properties of the pure enzyme in terms of the optimum pH (7-10) and temperature (20-25 °C), its stability, sensitivity to inhibition and ion dependency. We used quantitative RT-PCR and RNA in situ hybridization to monitor the expression of the UO gene, and we used a guinea pig anti-UO antibody to detect the native enzyme by western blot and by florescence immunohistochemistry in larval tissues. We found that L. sericata UO is exclusively present in the larval excretion organ (the Malpighian tubes) and is freely available in the cytoplasm rather than restricted to a specific subcellular compartment. Allantoin is a final product of L. sericata purine catabolism. It is produced by UO in the Malpighian tubes to remove uric acid from the hemolymph and is consequently excreted via the hindgut. Our findings confirm the hypothesis that both actively secreted molecules and excretion products contribute to the beneficial effects of MDT.
Collapse
Affiliation(s)
- Andre Baumann
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Marisa Skaljac
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Rüdiger Lehmann
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany; Justus-Liebig-University of Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Zdenӗk Franta
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany.
| |
Collapse
|