1
|
Nagalievska M, Vilkiv K, Mishchenko L, Sybirna N. Effects of yacon on carbohydrates and lipid metabolism, oxidative-nitrative stress markers changes in rats with experimental metabolic syndrome. Heliyon 2025; 11:e42147. [PMID: 39925358 PMCID: PMC11804531 DOI: 10.1016/j.heliyon.2025.e42147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Background and aim Smallanthus sonchifolius (Poepp. and Hendl.) H. Robinson, commonly known as yacon, is a medicinal species recognized for its therapeutic properties. The hypoglycemic and hypolipidemic effects of yacon root tubers have been well-documented across various models of metabolic syndrome. However, research on the effects of biologically active compounds derived from yacon leaves remains limited. The aim of the study was to evaluate the hypoglycemic, hypolipidemic and antioxidant effects of an aqueous extract of yacon leaves under the fructose-induced experimental metabolic syndrome. Experimental procedure In the study were used male Wistar white rats, in which metabolic syndrome was induced by consuming a 10 % fructose solution. Animals were given an aqueous extract of yacon leaves at a dose of 500 mg per kilogram of body weight for seven and fourteen days following the establishment of metabolic syndrome. Hypoglycemic (glucose and glycosylate hemoglobin concentrations) and hypolipidemic (plasma cholesterol, triglycerides, low-density lipoproteins and high-density lipoproteins levels) effects and antioxidant activity (activity of superoxide dismutase, catalase, glutathione peroxidase, NO-synthase, the content of nitrite anion (NO₂‾) and nitrate anion (NO₃‾), content of carbonyl groups and thiobarbituric acid reactive substances) of extract were then evaluated. Results The 14 days use of aqueous extract of yacon for the treatment of fructose-induced metabolic syndrome leads to a decrease of animals' body weight (59.94 %), glucose concentration (10.33 %), glycosylated hemoglobin content (61.58 %), blood plasma triglycerides (50.35 %), cholesterol (24.46 %), low-density lipoproteins (21.56 %), as well as to increase in high-density lipoproteins concentration (29.29 %), paraoxonase activity (56.03 %). In animals with experimental MetS yacon cause oxidative-nitrative stress indicators normalization: increase in SOD (47.85 %) and GPO activity (16.55 %); decrease in TBARS content (23.77 %) and proteins oxidative modification products of neutral character (52.56 %); decrease in NOS activity (12.30 %), which was accompanied by a decrease in nitrate content (10.44 %). Conclusions The aqueous extract of yacon demonstrates significant hypoglycemic and hypolipidemic effects in a fructose-induced model of experimental metabolic syndrome, contributing to the normalization of both prooxidant and antioxidant states in rat erythrocytes.
Collapse
Affiliation(s)
- Mariia Nagalievska
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4 Hrushevskoho St., Lviv, 79005, Ukraine
| | - Khrystyna Vilkiv
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4 Hrushevskoho St., Lviv, 79005, Ukraine
| | - Lidiya Mishchenko
- Educational and Scientific Centre “Institute of Biology and Medicine” 64/13 Volodymyrska, 01601 Kyiv, Ukraine
| | - Nataliia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4 Hrushevskoho St., Lviv, 79005, Ukraine
- Collegium Medicum, Faculty of Biotechnology, University of Rzeszow, 8B Zelwerowicza St., Rzeszow 35-601, Poland
| |
Collapse
|
2
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024; 34:2611-2622. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
3
|
Sharma A, Lee HJ. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2024; 13:1389. [PMID: 39594531 PMCID: PMC11590959 DOI: 10.3390/antiox13111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a silent threat to human health, with prevalence rising at an alarming rate. The treatment and prevention of NAFLD depend on novel approaches as no effective treatment options are currently available. Berries are unique sources of phenolic compounds that have proven roles in disease prevention and health promotion. However, a comprehensive review of the effects of different berries on NAFLD and related pathologies is lacking. Thus, the present review aims to summarize the effects of berry extracts, plant parts, and bioactive compounds from twenty-one different berries on NAFLD. The molecular mechanisms involved include the regulation of lipid homeostasis, modulation of oxidative stress and inflammation markers, and activation of different signaling pathways in different in vitro and in vivo NAFLD models. Furthermore, their modulatory effects on the gut microbiota have also been highlighted. Clinical intervention research on the benefits of berries in NAFLD is limited; nonetheless, this paper discusses clinical studies demonstrating the effects of different berries in people with NAFLD. Future research should focus on long-term clinical studies to compare the therapeutic potentials of different berries against NAFLD.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Kocabas S, Sanlier N. The power of berries against cardiovascular diseases. Nutr Rev 2024; 82:963-977. [PMID: 37695292 DOI: 10.1093/nutrit/nuad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health and incidence is increasing gradually. Nutrition has an important impact on the prophylaxis and progression of CVD. In this article, general attention is drawn to the possible positive effects of berries on CVD. Polyphenols have beneficial effects on the vascular system by inhibiting low-density lipoprotein oxidation and platelet aggregation, lowering blood pressure, improving endothelial dysfunction, and attenuating antioxidant defense and inflammatory responses. This review provides an overview of the effects of berries for the prevention and treatment of CVDs. Berries contain several cardioprotective antioxidants, vitamins, and numerous phytochemicals, such as phenolic compounds, that have antioxidant properties and antiplatelet activity. Phytochemical compounds in their structures can modulate dissimilar signaling pathways related to cell survival, differentiation, and growth. Important health benefits of berries include their antioxidant roles and anti-inflammatory impacts on vascular function. The effectiveness and potential of polyphenols primarily depend on the amount of bioavailability and intake. Although circulating berry metabolites can improve vascular function, their biological activities, mechanisms of action, and in vivo interactions are still unknown. Analyzing human studies or experimental studies to evaluate the bioactivity of metabolites individually and together is essential to understanding the mechanisms by which these metabolites affect vascular function.
Collapse
Affiliation(s)
- Sule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
5
|
Saigo Y, Uno K, Ishigure T, Odake T, Ohta T. Pathophysiological Features of Rat Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. In Vivo 2024; 38:990-999. [PMID: 38688597 PMCID: PMC11059886 DOI: 10.21873/invivo.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is caused by various factors, including genetic and/or environmental factors, and has complicated pathophysiological features during the development of the disease. NAFLD/NASH is recognized as an unmet medical need, and NAFLD/NASH animal models are essential tools for developing new therapies, including potential drugs and biomarkers. In this review, we describe the pathological features of the NAFLD/NASH rat models, focusing on the histopathology of hepatic fibrosis. NAFLD/NASH rat models are divided into three categories: diet-induced, genetic, and combined models based on diet, chemicals, and genetics. Rat models of NASH with hepatic fibrosis are especially expected to contribute to the development of new therapies, such as drugs and biomarkers.
Collapse
Affiliation(s)
- Yasuka Saigo
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Kinuko Uno
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Tatsuya Ishigure
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Tatsumi Odake
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
7
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
8
|
Boeira LS, Cád SV, Bezerra JA, Benavente CT, Neta MTSL, Sandes RDD, Narain N. Development of alcohol vinegars macerated with ACAI (Euterpe precatoria Mart.) berries and their quality evaluations with emphasis on color, antioxidant capacity, and volatiles profile. J Food Sci 2023; 88:666-680. [PMID: 36617682 DOI: 10.1111/1750-3841.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
In this work, the Amazonian native acai fruit, a superfruit recognized worldwide, was used through a simple operation of maceration in alcohol vinegar to transform it into an attractive and functional product containing the acai natural colorant and its bioactive compounds. The variables studied were the proportion of alcohol vinegar to acai (8:2 and 1:1) and maceration period (7, 14, and 21 days). The final vinegar was subjected to the determination of color parameters, antioxidant capacity (DPPH, ABTS), total phenolics content (TPC), volatile compounds extracted by stir bar sorptive extraction and identified by gas-chromatography-mass spectrometry analysis. The alcohol vinegars macerated with acai presented the color according to the content of acai added and maceration period employed, whereas antioxidant capacity and TPC were comparable to vinegars elaborated from fruits and red wine. Sixty volatiles compounds classified into five chemical groups were identified. The principal volatile compounds which contributed to the aroma in the products were 3-methyl-1-butanol, phenylethyl alcohol, benzaldehyde, o-cymene, p-cymenene, isoamyl acetate, and ethyl acetate. The most attractive product regarding the parameters studied was obtained from the use of the proportion of 1:1 of alcohol vinegar:acai and maceration period of 14 days. This product retained the most similar color to acai in natura, the highest values for antioxidant capacity measured by ABTS and TPC while being rich in volatile compounds due to the contributions mainly of alcohols, esters, aldehydes, and terpenes. PRACTICAL APPLICATION: This work demonstrates the feasibility to produce an alcohol vinegar with an attractive color and functional properties by the addition of acai resulting in to a wide spectrum of chemical compounds of acai through a very simple operation of maceration during 14 days of a proportion of 1:1 of alcohol vinegar:acai.
Collapse
Affiliation(s)
- Lúcia S Boeira
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - Sandra V Cád
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - Jaqueline A Bezerra
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - César T Benavente
- National Institute for Amazonian Research (INPA), Laboratory of Plant Breeding, Manaus, Amazonas, Brazil
| | - Maria Terezinha S L Neta
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| | - Rafael Donizete Dutra Sandes
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| | - Narendra Narain
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
9
|
Arab ZN, Khayatan D, Razavi SM, Zare K, Kheradkhah E, Momtaz S, Ferretti G, Bacchetti T, Sathyapalan T, Emami SA, Abdolghaffari AH, Sahebkar A. Phytochemicals as Modulators of Paraoxonase-1 in Health and Diseases. Antioxidants (Basel) 2022; 11:1273. [PMID: 35883764 PMCID: PMC9311866 DOI: 10.3390/antiox11071273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic diseases such as cardiovascular disease (CVD), atherosclerosis, chronic liver disease, and neurodegenerative diseases are major causes of mortality. These diseases have gained much attention due to their complications, and therefore novel approaches with fewer side effects are an important research topic. Free radicals and oxidative stress are involved in the molecular mechanisms of several diseases. Antioxidants can scavenge free radicals and mitigate their adverse effects. One of the most important antioxidant enzymes are paraoxonases (PONs). These enzymes perform a wide range of physiological activities ranging from drug metabolism to detoxification of neuroleptics. Paraoxonase-1 (PON1) is produced in the liver and then transferred to the bloodstream. It has been demonstrated that PON1 could have beneficial effects in numerous diseases such as atherosclerosis, CVD, diabetes mellitus, and neurodegenerative diseases by modulating relevant signalling pathways involved in inflammation and oxidative stress. These pathways include peroxisome proliferator-activated receptor gamma (PPAR-γ) and protein kinase B/nuclear factor kappa-light-chain-enhancer of activated B cells (AKT/NF-κB)-dependent signalling pathways. Increasing PON1 could potentially have protective effects and reduce the incidence of various diseases by modulating these signalling pathways. Several studies have reported that dietary factors are able to modulate PON1 expression and activity. This review aimed at summarizing the state of the art on the effects of dietary phytochemicals on PON1 enzyme activity and the relevant signalling pathways in different diseases.
Collapse
Affiliation(s)
- Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (Z.N.A.); (D.K.); (S.M.R.); (E.K.)
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (Z.N.A.); (D.K.); (S.M.R.); (E.K.)
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (Z.N.A.); (D.K.); (S.M.R.); (E.K.)
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran;
| | - Elnaz Kheradkhah
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (Z.N.A.); (D.K.); (S.M.R.); (E.K.)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gianna Ferretti
- Department of Clinical Science, Polytechnic University of Marche, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy;
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (Z.N.A.); (D.K.); (S.M.R.); (E.K.)
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Quercetin Abrogates Oxidative Neurotoxicity Induced by Silver Nanoparticles in Wistar Rats. Life (Basel) 2022; 12:life12040578. [PMID: 35455069 PMCID: PMC9024840 DOI: 10.3390/life12040578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the oxidative neurotoxicity induced by silver nanoparticles (AgNPs) and assess the neuroprotective effects of quercetin against this toxicity. Forty adult male rats were divided into four equal groups: control, AgNPs (50 mg/kg intraperitoneally), quercetin (50 mg/kg orally), and quercetin + AgNPs. After 30 days, blood and brain tissue samples were collected for further studies. AgNP exposure increased lipid peroxidation and decreased glutathione peroxidase, catalase, and superoxide dismutase activities in brain tissue. AgNPs decreased serum acetylcholine esterase activity and γ-aminobutyric acid concentrations. AgNPs upregulated tumor necrosis factor-α, interleukin-1β, and Bax transcript levels. AgNPs reduced the transcripts of claudin-5, brain-derived neurotrophic factor, paraoxonase, nuclear factor-erythroid factor 2 (Nrf2), and Bcl-2. Histopathologically, AgNPs caused various degenerative changes and neuronal necrosis associated with glial cell reactions. AgNPs increased the immunohistochemical staining of glial fibrillary acidic protein (GFAP) in the cerebrum and cerebellum. Oral treatment with quercetin efficiently counteracted the opposing effects of AgNPs on brain tissue via modulation of tight junction proteins, Nrf2, and paraoxonase, and its positive mechanism in modulating pro-inflammatory cytokines and the downregulation of GFAP expression, and the apoptotic pathway. AgNPs also altered the severity of histopathological lesions and modulated GFAP immunostaining in the examined tissue.
Collapse
|
11
|
DOS REIS TMP, AGUIAR GG, BARBOSA-FILHO V, LIMA EDS, ROSSATO M. Effect of açai supplementation (Euterpe Oleracea Mart.) associated with exercise in animals and human: a scoping review. REV NUTR 2022. [DOI: 10.1590/1678-9865202235e210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT Objective This scoping review aimed to map evidence on açai supplementation combined with exercise in animal and/or human experimental studies. Methods The search considered six electronic databases and screening of relevant references. The selection process and data extraction were performed by two independent authors. The study characteristics, and AS (e.g., form, intervention time, amount ingested) and exercise (e.g., types, intensity, and duration) strategies were summarized, as well as their reported results. Results From an initial total of 342 studies identified; 11 (5 with animal and 6 with human models) were eligible. In animals, açai supplementation and exercise led to benefits in exercise tolerance and improvements in several hemodynamic parameters, as well as significant improvements in liver markers and glucose metabolism. In humans, açai supplementation indicated positive results in increasing exhaustion time to 90% of VO2max and increasing intensity at the anaerobic threshold. Conclusion We conclude that future research involving animals and humans should examine açai supplementation and exercise with (a) obesity models to test the effect of adiponectin on body composition with analysis of histological and histochemical parameters; (b) eccentric injury protocols with the incorporation of muscle quality variables to assess recovery; (c) chronic açai supplementation and strength training; (d) comparison of different forms of açai supplementation in exercise protocols.
Collapse
|
12
|
Lavorato VN, de Miranda DC, Drummond FR, Rezende LMT, do Carmo Gouveia Pelúzio M, Silva ME, Natali AJ. Combined action of açai and aerobic exercise training on the development of NAFLD induced by a high-fat diet: a preliminary exploration. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kravchenko LV, Aksenov IV, Nikitin NS, Guseva GV, Avrenyeva LI, Trusov NV, Balakina AS, Tutelyan VA. Lipoic Acid Exacerbates Oxidative Stress and Lipid Accumulation in the Liver of Wistar Rats Fed a Hypercaloric Choline-Deficient Diet. Nutrients 2021; 13:1999. [PMID: 34200615 PMCID: PMC8227681 DOI: 10.3390/nu13061999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently estimated as the most prevalent chronic liver disease in all age groups. An increasing body of evidence obtained in experimental and clinical data indicates that oxidative stress is the most important pathogenic factor in the development of NAFLD. The study aimed to investigate the impact of α-lipoic acid (LA), widely used as an antioxidant, on the effects of a hypercaloric choline-deficient diet. Male Wistar rats were divided into three groups: control diet (C); hypercaloric choline-deficient diet (HCCD), and hypercaloric choline-deficient diet with α-lipoic acid (HCCD+LA). Supplementation of HCCD with LA for eight weeks led to a decrease in visceral adipose tissue/body weight ratio, the activity of liver glutathione peroxidase and paraoxonase-1, plasma, and liver total antioxidant activity, as well as an increase in liver/body weight ratio, liver total lipid and triglyceride content, and liver transaminase activities compared to the HCCD group without LA. In conclusion, our study shows that α-lipoic acid detains obesity development but exacerbates the severity of diet-induced oxidative stress and lipid accumulation in the liver of male Wistar rats fed a hypercaloric choline-deficient diet.
Collapse
Affiliation(s)
- Lidia V. Kravchenko
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Ilya V. Aksenov
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Nikolay S. Nikitin
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Galina V. Guseva
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Ludmila I. Avrenyeva
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Nikita V. Trusov
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Anastasia S. Balakina
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Victor A. Tutelyan
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
- FSAEI HE I.M. Sechenov First MSMU MOH Russia (Sechenovskiy University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
14
|
Lavorato VN, Miranda DCD, Isoldi MC, Drummond FR, Soares LL, Reis ECC, Pelúzio MDCG, Pedrosa ML, Silva ME, Natali AJ. Effects of aerobic exercise training and açai supplementation on cardiac structure and function in rats submitted to a high-fat diet. Food Res Int 2021; 141:110168. [PMID: 33642024 DOI: 10.1016/j.foodres.2021.110168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/25/2023]
Abstract
This study evaluated the effect of aerobic exercise training (AET) and supplementation with açai on cardiac structure and function in rats submitted to a high-fat diet. Two-month old Fischer male rats were divided into 5 groups: Control (C), High-fat Diet (H), High-fat Diet + Açai (HA), High-fat Diet + AET (HT), High-fat Diet + Açai + AET (HAT). The high-fat diet had 21.8% lard and 1% cholesterol (H and HT), or supplemented with 1% lyophilized açai pulp (HA and HAT). The HT and HAT groups performed AET on a treadmill (5 days/week, 1 h/day, 60% of the maximum running speed) for 8 weeks. Exercise tolerance test were performed, and adiposity index calculated. After euthanasia, the left ventricle (LV) was dissected and processed for histological, single myocyte intracellular calcium ([Ca2+]i) transient and contractility, oxidative stress and gene expression analysis. AET improved running capacity and reduced the adiposity index. Both AET and açai supplementation inhibited the increase in the LV collagen content, the deleterious effects on the [Ca2+]i transient and contractility in cardiomyocytes and the increment in oxidative stress, caused by the consumption of a high-fat diet. Aerobic exercise training and açai supplementation can mitigate damage caused by high-fat diet in cardiac structure and function, though the combination of treatments had no additional effects.
Collapse
Affiliation(s)
- Victor Neiva Lavorato
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | | | - Mauro César Isoldi
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Filipe Rios Drummond
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | | - Maria Lúcia Pedrosa
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Pirozzi AVA, Imbimbo P, D’Agostino A, Tirino V, Finamore R, Monti DM, Piccoli R, Schiraldi C. Antioxidant and Hypolipidemic Activity of Açai Fruit Makes It a Valuable Functional Food. Antioxidants (Basel) 2020; 10:antiox10010040. [PMID: 33396456 PMCID: PMC7824079 DOI: 10.3390/antiox10010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Several plant extracts are acquiring increasing value because of their antioxidant activity and hypolipidemic properties. Among them, great interest has been recently paid to açai fruit as a functional food. The aim of this study was to test the ability of açai extract in reducing oxidative stress and modulating lipid metabolism in vitro using different cell models and different types of stress. In fact, lipid peroxidation as evaluated in a HepG2 model was reduced five-fold when using 0.25 µg/mL of extract, and it was further reduced (20-fold) with the concentration increase up to 2.5 µg/mL. With the non alcoholic fatty liver disease (NAFLD)in vitro model, all concentrations tested showed at least a two-fold reduced fat deposit. In addition, primary adipocytes challenged with TNF-α under hypoxic conditions to mimic the persistent subcutaneous fat, treated with açai extract showed an approximately 40% reduction of fat deposit. Overall, our results show that açai is able to counteract oxidative states in all the cell models analysed and to prevent the accumulation of lipid droplets. No toxic effects and high stability overtime were highlighted at the concentrations tested. Therefore, açai can be considered a suitable support in the prevention of different alterations of lipid and oxidative metabolism responsible for fat deposition and metabolic pathological conditions.
Collapse
Affiliation(s)
- Anna Virginia Adriana Pirozzi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Antonella D’Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Rosario Finamore
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
- Correspondence:
| |
Collapse
|
16
|
Shibuya S, Toda T, Ozawa Y, Yata MJV, Shimizu T. Acai Extract Transiently Upregulates Erythropoietin by Inducing a Renal Hypoxic Condition in Mice. Nutrients 2020; 12:nu12020533. [PMID: 32092924 PMCID: PMC7071527 DOI: 10.3390/nu12020533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Acai (Euterpe oleracea Mart. Palmae, Arecaceae) is a palm plant native to the Brazilian Amazon. It contains many nutrients, such as polyphenols, iron, vitamin E, and unsaturated fatty acids, so in recent years, many of the antioxidant and anti-inflammatory effects of acai have been reported. However, the effects of acai on hematopoiesis have not been investigated yet. In the present study, we administered acai extract to mice and evaluated its hematopoietic effects. Acai treatment significantly increased the erythrocytes, hemoglobin, and hematocrit contents compared to controls for four days. Then, we examined the hematopoietic-related markers following a single injection. Acai administration significantly increased the levels of the hematopoietic-related hormone erythropoietin in blood compared to controls and also transiently upregulated the gene expression of Epo in the kidney. Furthermore, in the mice treated with acai extract, the kidneys were positively stained with the hypoxic probe pimonidazole in comparison to the controls. These results demonstrated that acai increases the erythropoietin expression via hypoxic action in the kidney. Acai can be expected to improve motility through hematopoiesis.
Collapse
Affiliation(s)
- Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan;
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | - Toshihiko Toda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan;
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; (T.T.); (Y.O.)
- Correspondence: ; Tel.: +81-562-44-5651; Fax: +81-562-48-2373
| |
Collapse
|
17
|
Barbosa PO, de Souza MO, Pala D, Freitas RN. Açaí (Euterpe oleracea Martius) as an antioxidant. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Sayılan Özgün G, Özgün E, Tabakçıoğlu K, Süer Gökmen S, Eskiocak S. Effect of palmitate-induced steatosis on paraoxonase-1 and paraoxonase-3 enzymes in human-derived liver (HepG2) cells. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2019. [DOI: 10.25000/acem.623975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019; 11:nu11091983. [PMID: 31443489 PMCID: PMC6770868 DOI: 10.3390/nu11091983] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Blood lipids are an important biomarker of cardiovascular health and disease. Among the lipid biomarkers that have been widely used to monitor and predict cardiovascular diseases (CVD), elevated LDL and low HDL cholesterol (C), as well as elevated triglyceride-rich lipoproteins, deserve special attention in their predictive abilities, and thus have been the targets of several therapeutic and dietary approaches to improving lipid profiles. Among natural foods and nutraceuticals, dietary berries are a rich source of nutrients, fiber, and various types of phytochemicals. Berries as whole fruits, juices, and purified extracts have been shown to lower total and LDL-C, and increase HDL-C in clinical studies in participants with elevated blood lipids, type 2 diabetes or metabolic syndrome. This short review aimed to further discuss the mechanisms and magnitude of the lipid-lowering effects of dietary berries, with emphasis on reported clinical studies. Based on the emerging evidence, colorful berry fruits may thus be included in a healthy diet for the prevention and management of CVD.
Collapse
|
20
|
Barbosa PO, de Souza MO, Paiva DPD, Silva ME, Lima WG, Bermano G, Freitas RN. Açaí (Euterpe oleracea Martius) supplementation in the diet during gestation and lactation attenuates liver steatosis in dams and protects offspring. Eur J Nutr 2019; 59:1895-1908. [DOI: 10.1007/s00394-019-02040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/29/2019] [Indexed: 12/28/2022]
|
21
|
de Freitas Carvalho MM, Lage NN, de Souza Paulino AH, Pereira RR, de Almeida LT, da Silva TF, de Brito Magalhães CL, de Lima WG, Silva ME, Pedrosa ML, da Costa Guerra JF. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci Rep 2019; 9:8107. [PMID: 31147590 PMCID: PMC6542795 DOI: 10.1038/s41598-019-44563-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most predominant liver disease worldwide, is a progressive condition that encompasses a spectrum of disorders ranging from steatosis to steatohepatitis, and, ultimately, cirrhosis and hepatocellular carcinoma. Although the underlying mechanism is complex and multifactorial, several intracellular events leading to its progression have been identified, including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and altered endoplasmic reticulum (ER) homeostasis. Phenolic compounds, such as those present in açai (Euterpe oleracea Mart.), are considered promising therapeutic agents due to their possible beneficial effects on the prevention and treatment of NAFLD. We tested in vitro effects of aqueous açai extract (AAE) in HepG2 cells and its influence on oxidative stress, endoplasmic reticulum stress, and inflammation in a murine model of high fat diet-induced NAFLD. In vitro AAE exhibited high antioxidant capacity, high potential to inhibit reactive oxygen species production, and no cytotoxicity. In vivo, AAE administration (3 g/kg) for six weeks attenuated liver damage (alanine aminotransferase levels), inflammatory process (number of inflammatory cells and serum TNFα), and oxidative stress, through the reduction of lipid peroxidation and carbonylation of proteins determined by OxyBlot and modulation of the antioxidant enzymes: glutathione reductase, SOD and catalase. No change was observed in collagen content indicating an absence of fibrosis, stress-related genes in RE, and protein expression of caspase-3, a marker of apoptosis. With these results, we provide evidence that açai exhibits hepatoprotective effects and may prevent the progression of liver damage related to NAFLD by targeting pathways involved in its progression.
Collapse
Affiliation(s)
- Mayara Medeiros de Freitas Carvalho
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nara Nunes Lage
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alice Helena de Souza Paulino
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata Rebeca Pereira
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Letícia Trindade de Almeida
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Tales Fernando da Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Cíntia Lopes de Brito Magalhães
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Wanderson Geraldo de Lima
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Marcelo Eustáquio Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Foods, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Lucia Pedrosa
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | |
Collapse
|
22
|
Protection by different classes of dietary polyphenols against palmitic acid-induced steatosis, nitro-oxidative stress and endoplasmic reticulum stress in HepG2 hepatocytes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Beneficial effects of consumption of acerola, cashew or guava processing by-products on intestinal health and lipid metabolism in dyslipidaemic female Wistar rats. Br J Nutr 2018; 119:30-41. [DOI: 10.1017/s0007114517003282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis study assessed the effects of diet supplementation with industrial processing by-products of acerola (Malpighia emarginataD.C.), cashew (Anacardium occidentaleL.) and guava (Psidium guajavaL.) fruit on the intestinal health and lipid metabolism of female Wistar rats with diet-induced dyslipidaemia. Female rats were randomly divided into five groups: healthy control, dyslipidaemic control and dyslipidaemic experimental receiving acerola, cashew or guava processing by-products. Fruit processing by-products were administered (400 mg/kg body weight) via orogastric administration for 28 consecutive days. Acerola, cashew and guava by-products caused body weight reduction (3·42, 3·08 and 5·20 %, respectively) in dyslipidaemic female rats. Dyslipidaemic female rats receiving fruit by-products, especially from acerola, presented decreased faecal pH, visceral fat, liver fat and serum lipid levels, as well as increased faecal moisture, faecal fat excretion, faecalBifidobacteriumspp. andLactobacillusspp. counts and amounts of organic acids in faeces. Administration of the tested fruit processing by-products protected colon and liver from tissue damage (e.g. destruction of liver and colon cells and increased fat deposition in hepatocytes) induced by dyslipidaemic diet. Dietary fibres and phenolic compounds in tested fruit by-products may be associated with these positive effects. The industrial fruit processing by-products studied, mainly from acerola, exert functional properties that could enable their use to protect the harmful effects on intestinal health and lipid metabolism caused by dyslipidaemic diet.
Collapse
|
24
|
Martini D, Del Bo’ C, Porrini M, Ciappellano S, Riso P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Liu H, Zhong H, Leng L, Jiang Z. Effects of soy isoflavone on hepatic steatosis in high fat-induced rats. J Clin Biochem Nutr 2017; 61:85-90. [PMID: 28955124 PMCID: PMC5612816 DOI: 10.3164/jcbn.16-98] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Soy isoflavone has benefits for metabolic syndrome but the mechanism is not completely understood. This study was designed to determine the effects of soy isoflavone on hepatic fat accumulation in non-alcoholic fatty liver disease (NAFLD) rats induced by high fat diet (HFD). Sprague-Dawley rats were administrated with a normal fat diet (control), HFD (NAFLD model), HFD with 10 or 20 mg/kg soy isoflavone daily for 12 weeks. Hepatic and serum lipid contents, liver histopathological examination, serum alanine transaminase (ALT), protein and mRNA expression of sterol regulatory element binding protein (SREBP)-1c, fatty acid synthase (FAS), peroxisome proliferator-activated receptor (PPAR) α were assayed respectively. Our study found that soy isoflavone reduced HFD-induced lipid accumulation in liver, serum ALT and improved liver lobule structure. In addition, the expression of SREBP-1c and FAS was lower, whereas protein level of PPARα was higher in two soy isoflavone groups than that of the HFD group. Collectively, these results demonstrate that soy isoflavone is capable of alleviating hepatic steatosis and delaying the progression of NAFLD via inhibiting lipogenesis and promoting fatty acid oxidation in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Leng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
26
|
Assis RP, Arcaro CA, Gutierres VO, Oliveira JO, Costa PI, Baviera AM, Brunetti IL. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on Inhibition of LDL Oxidation and Increases in HDL and Paraoxonase Levels in Streptozotocin-Diabetic Rats. Int J Mol Sci 2017; 18:E332. [PMID: 28333071 PMCID: PMC5412263 DOI: 10.3390/ijms18040332] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy using natural antioxidants to manage diabetes mellitus and its complications is an emerging trend. The aim of this study was to investigate the changes promoted by treatment of streptozotocin (STZ)-diabetic rats with yoghurt enriched with the bioactives curcumin, lycopene, or bixin (the latter two being carotenoids). Antioxidants were administered individually, or as mixtures, and biomarkers of metabolic and oxidative disturbances, particularly those associated with cardiovascular risk, were assessed. Treatment of STZ-diabetic rats with natural products individually decreased glycemia, triacylglycerol, total-cholesterol, oxidative stress biomarkers, including oxidized low-density lipoprotein (ox-LDL), and increased the activities of antioxidant enzymes. Individual carotenoids increased both high-density lipoprotein (HDL) and paraoxonase levels, whereas curcumin increased only paraoxonase. Treatments with mixtures of curcumin and lycopene or bixin had combined effects, decreasing biomarkers of carbohydrate and lipid disturbances (curcumin effect), increasing the HDL levels (carotenoids effects) and mitigating oxidative stress (curcumin and carotenoids effects). The combined effects also led to prevention of the LDL oxidation, thereby mitigating the cardiovascular risk in diabetes. These findings provide evidence for the beneficial effect of curcumin and carotenoid mixtures as a supplementation having antioxidant and antiatherogenic potentials, thus appearing as an interesting strategy to be studied as a complementary therapy for diabetic complications.
Collapse
Affiliation(s)
- Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Carlos Alberto Arcaro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Vânia Ortega Gutierres
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Paulo Inácio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|