1
|
Cao R, Li H, Liu G, Yan P, Zhang J, Chen Y, Duan X, Zhao Y, Lei Y, Liu C, Guan H, Xing F, Li Y, Wang K, Kong N, Tian R, Yang P. Aging and autophagic phenotypic changes in bone marrow mesenchymal stem cells in glucocorticoid-induced osteonecrosis. Int Immunopharmacol 2025; 152:114389. [PMID: 40073811 DOI: 10.1016/j.intimp.2025.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Glucocorticoid (GC) overuse is the main cause of osteonecrosis of the femoral head (ONFH). The dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays an important role in ONFH pathogenesis. Physiological concentrations of GCs can induce the osteogenic differentiation of BMSCs; however, intervention with high concentrations of GC may lead to changes in aging and autophagy in certain cell types. METHODS We generated an ONFH mouse model by injecting C57BL/6 J mice with MPS. BMSCs were harvested from the femora and tibiae of mice and were analyzed for osteogenesis, adipogenesis, senescence, and cell proliferation. In vitro, BMSCs were treated with different concentrations of GC for 48 h, followed by functional analyses to identify differentially expressed genes (DEGs) associated with ONFH. Additionally, various bioinformatics analyses were performed to identify differentially expressed genes in ONFH. RESULTS BMSCs from ONFH mice showed signs of aging, as indicated by increased SA-β-gal positive cells (4.4-fold) and upregulated p53 (2.6-fold) and p21 (2.0-fold) protein expression. It is also accompanied by changes in osteogenic/lipogenic differentiation ability. Bioinformatics analysis further verified these findings. High-dose GC stimulation significantly induced cellular senescence of BMSCs, as indicated by an increase in SA-β-gal positive cells (6.2-fold) and a decrease in autophagy levels. GC stimulation changes the differentiation fate of BMSCs. CONCLUSIONS Our results indicated that GC-induced ONFH was associated with changes in aging and autophagy in BMSCs. GC not only directly affected the osteogenic differentiation of BMSCs but also indirectly affected their differentiation fate through aging and autophagy changes.
Collapse
Affiliation(s)
- Ruomu Cao
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanzhi Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Yan
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiewen Zhang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xudong Duan
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiwei Zhao
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutian Lei
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenkun Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanshuai Guan
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangze Xing
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiyang Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Kong
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Run Tian
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Li Y, Ma X, Dong B, Li Y, Liang Z. Network meta-analysis of invasive treatment for early-stage osteonecrosis of the femoral head. J Orthop Surg Res 2024; 19:30. [PMID: 38172990 PMCID: PMC10765848 DOI: 10.1186/s13018-023-04513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a common disabling disease in orthopedics. Blocking the progression of ONFH in the early stage is essential for avoiding total hip replacement. PURPOSES The purpose of this study is to evaluate the effect of invasive treatment on early-stage ONFH. METHODS According to the PRISMA guidelines, relevant English databases were searched in August 2022 to collect published research. Extract result indicators and conduct network meta-analysis using R software. RESULTS A total of 15 RCTs were included. All patients were diagnosed with early-stage ONFH. The surface under the cumulative ranking curve (SUCRA) showed that CD + BMMSC and CD + PRP were the most effective in improving HHS. The results of the league table showed that CD + BMMSC was superior to CD alone. Meanwhile, the SUCRA for FR showed that CD + BG + BMMSC was the most likely to be the most effective in reducing FR. The league table revealed that CD + BG, CD + BG + BMMSC, and CD + BMMSC were superior to CD alone, with statistically significant differences. CONCLUSION Considering the HHS and FR, CD + BMMSC may be the optimal treatment option to effectively delay the progression of ONFH and restore the postoperative function of patients. REGISTRATION NUMBER The study protocol has been registered on the PROSPERO platform (CRD42023380169).
Collapse
Affiliation(s)
- Yingchun Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi Province, People's Republic of China
| | - Xiuying Ma
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi Province, People's Republic of China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi Province, People's Republic of China.
| | - Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi Province, People's Republic of China
| | - Zhuang Liang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi Province, People's Republic of China
| |
Collapse
|
3
|
Lou P, Deng X, Hou D. The effects of nano-hydroxyapatite/polyamide 66 scaffold on dog femoral head osteonecrosis model: a preclinical study. Biomed Mater 2023; 18. [PMID: 36720170 DOI: 10.1088/1748-605x/acb7be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The lack of mechanical support in the bone tunnel formed after CD often results in a poor therapeutic effect in ONFH. The n-HA/P66 has excellent biocompatibility and mechanical properties and has been widely used in bone regeneration. The present study aimed to evaluate the effects of n-HA/P66 scaffold treatment in a dog model of ONFH. A FEA was performed to analyze the mechanical changes in the femoral head after CD and n-HA/P66 scaffold or tantalum rod implantation. Fifteen male beagles were selected to establish the model of ONFH by liquid nitrogen freezing method, and the models were identified by x-ray and MRI 4 weeks after modeling and randomly divided into three groups. Nine weeks later, femoral head samples were taken for morphology, micro-CT, and histological examination. The FEA showed that the n-HA/P66 scaffold proved the structural support in the bone tunnel, similar to the tantalum rod. The morphology showed that the femoral head with n-HA/P66 implantation is intact, while the femoral heads in the model group and CD group are collapsing. Moreover, the micro-CT results of the n-HA/P66 scaffold group were better than the model group and the CD group, and the interface between the n-HA/P66 scaffold and bone tissue is blurred. Furthermore, the histological result also verifies the alterations in micro-CT, and bone tissue grows in the bone tunnel with n-HA/P66 scaffold implanted while few in the CD group. The CD results in a lack of mechanical support in the femoral head subchondral bone and bone tunnel high stress. The n-HA/P66 scaffold implantation can provide mechanical support and relieve high stress induced by CD. The n-HA/P66 scaffold can treat femoral head necrosis and provide the bone tissue growth scaffold for the femoral head after CD to promote bone tissue regeneration.
Collapse
Affiliation(s)
- Pengqiang Lou
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China
| | - Xiaolei Deng
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China
| | - Decai Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China
| |
Collapse
|
4
|
Zhang W, Zheng C, Yu T, Zhang H, Huang J, Chen L, Tong P, Zhen G. The therapeutic effect of adipose-derived lipoaspirate cells in femoral head necrosis by improving angiogenesis. Front Cell Dev Biol 2022; 10:1014789. [PMID: 36330332 PMCID: PMC9624280 DOI: 10.3389/fcell.2022.1014789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head necrosis (FHN), one of the most popular joint diseases in the musculoskeletal system, is usually attributed to local ischemia of the femoral head. Thus, regenerating the vascularization capacity and restoring the local perfusion of the femoral head becomes an efficient therapeutic approach for FHN. We investigated the function of autologous lipoaspirate cells (LPCs) in regenerating circulation in FHN animal models and human subjects in this study. We also explored the mechanisms of why LPCs show a superior effect than that of the bone marrow-derived stem cells (BMSCs) in vascularization. Thirty-four FHN patients were recruited for the randomized clinical trial. Harris Hip Score (HHS) and digital subtraction arteriography (DSA) and interventional technique were used to compare the efficacy of LPCs treatment and vehicle therapy in improving femoral head circulation and hip joint function. Cellular mechanism that underlies the beneficial effect of LPCs in restoring blood supply and rescuing bone architecture was further explored using canine and mouse FHN animal models. We found that LPCs perfusion through the medial circumflex artery will promote the femoral head vascularization and bone structure significantly in both FHN patients and animal models. The HHS in LPCs treated patients was significantly improved relative to vehicle group. The levels of angiogenesis factor secreted by LPCs such as VEGF, FGF2, VEC, TGF-β, were significantly higher than that of BMSCs. As the result, LPCs showed a better effect in promoting the tube structure formation of human vascular endothelial cells (HUVEC) than that of BMSCs. Moreover, LPCs contains a unique CD44+CD34+CD31− population. The CD44+CD34+CD31− LPCs showed significantly higher angiogenesis potential as compared to that of BMSCs. Taken together, our results show that LPCs possess a superior vascularization capacity in both autonomous and paracrine manner, indicating that autologous LPCs perfusion via the medial circumflex artery is an effective therapy for FHN.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Traditional Chinese Medical Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Cheng Zheng
- Zhejiang Rehabilitation Medical Center, Zhejiang, China
| | - Tiefeng Yu
- Hangzhou Yingjian Bioscience & Technology Co., Ltd, Hangzhou, China
| | - Houjian Zhang
- Department of Traditional Chinese Medical Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxin Huang
- Department of Traditional Chinese Medical Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyue Chen
- Department of Economic and Management, University of Jinan, Shangdong, China
| | - Peijian Tong
- Department of Traditional Chinese Medical Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Gehua Zhen, ; Peijian Tong,
| | - Gehua Zhen
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Gehua Zhen, ; Peijian Tong,
| |
Collapse
|
5
|
Mao Q, Shao W, Lv S, Tong P, He B. Case report: Directional infusion of peripheral blood stem cells into the necrotic zone in femoral heads through the medial circumflex femoral artery: A tracing study. Front Med (Lausanne) 2022; 9:945268. [PMID: 36059815 PMCID: PMC9433798 DOI: 10.3389/fmed.2022.945268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to explore whether peripheral blood stem cells (PBSCs) infused through the medial circumflex femoral artery to treat osteonecrosis of the femoral head (ONFH) could migrate into the necrotic area of femoral head. Methods We collected PBSCs from a patient who had bilateral ONFH by apheresis technique using COBE spectra apheresis system (COBE BCT Inc, Lakewood, CO, USA) after subcutaneous injections of granulocyte-colony stimulating factor (G-CSF) at a dosage of 10 μg/kg for 4 days to mobilize PBSCs. After that, 100 MBq 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) was used to label PBSCs. 18F-FDG labeled PBSCs were infused into the left femoral head via the medial circumflex femoral artery to treat ONFH. Then the patient was underwent three-dimensional positron emission tomography (3D-PET) examination 60 min after cell infusion to monitor the biological distribution of 18F-FDG-labeled PBSCs, and to observe whether the transplanted PBSCs could migrate into the necrotic area of femoral head. Results The total number of monouclear cells in the peripheral blood stem cell suspension was 1.95 × 108 which contained 2.20 × 106 CD34+ cells. The activity of 18F-FDG in the labeled cells was 1.8Bq/103 monouclear cells. 3D-PET imaging showed that 18F-FDG radioactivity was detected in the necrotic area of femoral head, acetabulum and femoral bone marrow cavity after transplantation of 18F-FDG-labeled PBSCs via the medial circumflex femoral artery. It is worth noting that although PBSCs labeled with 18F-FDG were widely distributed around the hip, such as femoral bone marrow cavity, femoral head and acetabulum, PBSCs were generally located in the necrotic area of femoral head. Conclusions PBSCs could enter into the femoral head and migrate into the necrotic field of femoral head participating in the repair of osteonecrosis after infusion through the medial circumflex femoral artery.
Collapse
Affiliation(s)
- Qiang Mao
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bangjian He
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Bangjian He
| |
Collapse
|
6
|
Chun YS, Lee DH, Won TG, Kim CS, Shetty AA, Kim SJ. Cell therapy for osteonecrosis of femoral head and joint preservation. J Clin Orthop Trauma 2021; 24:101713. [PMID: 34926146 PMCID: PMC8646149 DOI: 10.1016/j.jcot.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a disease of the femoral head and can cause femoral head collapse and arthritis. This can lead to pain and gait disorders. ONFH has various risk factors, it is often progressive, and if untreated results in secondary osteo-arthritis. Biological therapy makes use of bone marrow concentrate, cultured osteoblast and mesenchymal stem cell (MSC) obtained from various sources. These are often used in conjunction with core decompression surgery. In this review article, we discuss the current status of cell therapy and its limitations. We also present the future development of biological approach to treat ONFH.
Collapse
Affiliation(s)
- You Seung Chun
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author. Department of Orthopedic Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea.
| | - Tae Gu Won
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Sik Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Medicine, Health and Social Care, 30 Pembroke Court, Chatham Maritime, Kent, ME4 4UF, United Kingdom
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
7
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
8
|
Zhou M, Xi J, Cheng Y, Sun D, Shu P, Chi S, Tian S, Ye S. Reprogrammed mesenchymal stem cells derived from iPSCs promote bone repair in steroid-associated osteonecrosis of the femoral head. Stem Cell Res Ther 2021; 12:175. [PMID: 33712030 PMCID: PMC7953570 DOI: 10.1186/s13287-021-02249-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cellular therapy based on mesenchymal stem cells (MSCs) is a promising novel therapeutic strategy for the osteonecrosis of the femoral head (ONFH), which is gradually becoming popular, particularly for early-stage ONFH. Nonetheless, the MSC-based therapy is challenging due to certain limitations, such as limited self-renewal capability of cells, availability of donor MSCs, and the costs involved in donor screening. As an alternative approach, MSCs derived from induced pluripotent stem cells (iPSCs), which may lead to further standardized-cell preparations. Methods In the present study, the bone marrow samples of patients with ONFH (n = 16) and patients with the fracture of the femoral neck (n = 12) were obtained during operation. The bone marrow-derived MSCs (BMSCs) were isolated by density gradient centrifugation. BMSCs of ONFH patients (ONFH-BMSCs) were reprogrammed to iPSCs, following which the iPSCs were differentiated into MSCs (iPSC-MSCs). Forty adult male rats were randomly divided into following groups (n = 10 per group): (a) normal control group, (b) methylprednisolone (MPS) group, (c) MPS + BMSCs treated group, and (d) MPS + iPSC-MSC-treated group. Eight weeks after the establishment of the ONFH model, rats in BMSC-treated group and iPSC-MSC-treated group were implanted with BMSCs and iPSC-MSCs through intrabone marrow injection. Bone repair of the femoral head necrosis area was analyzed after MSC transplantation. Results The morphology, immunophenotype, in vitro differentiation potential, and DNA methylation patterns of iPSC-MSCs were similar to those of normal BMSCs, while the proliferation of iPSC-MSCs was higher and no tumorigenic ability was exhibited. Furthermore, comparing the effectiveness of iPSC-MSCs and the normal BMSCs in an ONFH rat model revealed that the iPSC-MSCs was equivalent to normal BMSCs in preventing bone loss and promoting bone repair in the necrosis region of the femoral head. Conclusion Reprogramming can reverse the abnormal proliferation, differentiation, and DNA methylation patterns of ONFH-BMSCs. Transplantation of iPSC-MSCs could effectively promote bone repair and angiogenesis in the necrosis area of the femoral head. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02249-1.
Collapse
Affiliation(s)
- Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaoya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaofeng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Department of Orthopedics, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Denglong Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuiqing Chi
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuo Tian
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
López-Fernández A, Barro V, Ortiz-Hernández M, Manzanares MC, Vivas D, Vives J, Vélez R, Ginebra MP, Aguirre M. Effect of Allogeneic Cell-Based Tissue-Engineered Treatments in a Sheep Osteonecrosis Model. Tissue Eng Part A 2020; 26:993-1004. [PMID: 32122263 DOI: 10.1089/ten.tea.2019.0339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is defined as a tissue disorder and successive subchondral bone collapse resulting from an ischemic process, which may progress to hip osteoarthritis. Cell therapy with multipotent bone marrow mesenchymal stromal cells (BM-MSC) of autologous origin appears to be safe and has shown regenerative potential in previous preclinical and clinical studies. The use of allogeneic cells is far more challenging, but may be a promising alternative to use of autologous cells. Moreover, an optimized dosage of cells from an allogeneic source is needed to obtain off-the-shelf tissue engineering products (TEPs). The purpose of this study was to evaluate the efficacy of a TEP composed of undifferentiated ex vivo expanded BM-MSC of allogeneic origin, combined with bone matrix particles in variable doses. A comparative analysis of TEP's bone regenerative properties against its autologous counterpart was performed in an early-stage ONFH preclinical model in mature sheep. Allogeneic BM-MSC groups demonstrated bone regeneration capacity in osteonecrotic lesions equivalent to autologous BM-MSC groups 6 weeks after treatment. Likewise, stimulation of bone regeneration by a low cell dose of 0.5 × 106 BM-MSC/cm3 was equivalent to that of a high cell dose, 5 × 106 BM-MSC/cm3. Neither local nor systemic immunological reactions nor tumorigenesis were reported, strengthening the safety profile of allogeneic BM-MSC therapy in this model. Our results suggest that low-dose allogeneic BM-MSC is sufficient to promote bone regeneration in femoral head osteonecrotic lesions, and should be considered in translation of new allogeneic cell-based TEPs to human clinics. Impact statement Cell therapy and tissue engineering hold promise as novel regenerative therapies for musculoskeletal diseases, and particularly in bone regeneration strategies. In this article, we report the evaluation of the efficacy of an allogeneic cell-based tissue engineering product (TEP) in an early-stage osteonecrosis of the femoral head preclinical model in skeletally mature sheep. Moreover, we demonstrate its bone regeneration capacity and safety in vivo and its equivalence to autologous counterparts. These findings have important implications for the translation of new allogeneic cell-based TEPs to human clinics.
Collapse
Affiliation(s)
- Alba López-Fernández
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Víctor Barro
- Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mònica Ortiz-Hernández
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Maria Cristina Manzanares
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Vivas
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain
| | - Joaquim Vives
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Vélez
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Màrius Aguirre
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
10
|
The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2642439. [PMID: 32219128 PMCID: PMC7081027 DOI: 10.1155/2020/2642439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Background As a pathological process, osteonecrosis of the femoral head (ONFH) is characterized by the avascularity of the femoral head, cellular necrosis, microfracture, and the collapse of the articular surface. Currently, critical treatment for early-stage ONFH is limited to core decompression. However, the efficacy of core decompression remains controversial. To improve the core decompression efficacy, regenerative techniques such as the use of platelet-rich plasma (PRP) were proposed for early-stage ONFH. As a type of autologous plasma containing concentrations of platelets greater than the baseline, PRP plays an important role in tissue repair, regeneration, and the differentiation of mesenchymal stem cells (MSCs). In this review, we present a comprehensive overview of the operation modes, mechanism, and efficacy of PRP for early-stage ONFH treatment. Methods We searched for relevant studies in the PubMed, Web of Science, and Embase databases. By searching these electronic databases, the identification of either clinical or experimental studies evaluating PRP, MSC, core decompression, and ONFH was our goal. Results Seventeen studies of PRP and avascular necrosis of the femoral head were evaluated in our review. Ten studies related to the possible mechanism of PRP for treating ONFH were reviewed. Seven studies of the operation modes of PRP in treating ONFH were identified. We reviewed the efficacy of PRP in treating ONFH systematically and made an attempt to compare the PRP operation modes in 7 studies and other operation modes in past studies for early-stage ONFH treatment. Conclusion PRP treats ONFH mainly through three mechanisms: inducing angiogenesis and osteogenesis to accelerate bone healing, inhibiting inflammatory reactions in necrotic lesions, and preventing apoptosis induced by glucocorticoids. In addition, as an adjunctive therapy for core decompression, the use of PRP is recommended to improve the treatment of early-stage ONFH patients, especially when combined with stem cells and bone grafts, by inducing osteogenic activity and stimulating the differentiation of stem cells in necrotic lesions.
Collapse
|
11
|
Wu ZY, Sun Q, Liu M, Grottkau BE, He ZX, Zou Q, Ye C. Correlation between the efficacy of stem cell therapy for osteonecrosis of the femoral head and cell viability. BMC Musculoskelet Disord 2020; 21:55. [PMID: 31996187 PMCID: PMC6990483 DOI: 10.1186/s12891-020-3064-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common disease that greatly affects the quality of life of patients. Repair of the necrotic area is key to successful treatment. Currently, the combination of stem cell transplantation and decompression is used clinically to promote the repair of necrotic areas based on the characteristics of stem cells. However, a considerable number of patients do not achieve a satisfactory outcome in terms of repair of the femoral head necrotic area, and it is very important to determine the reasons for the poor curative effect. The aim of this study was to investigate the correlation between stem cell viability and the repair efficacy of stem cell therapy combined with core decompression for early-stage ONFH. Methods A total of 30 patients with idiopathic ONFH underwent core decompression combined with autologous stem cell transplantation. The Harris hip score (HHS) and difference in necrosis area before and after surgery were measured. The mean repair ratio was set as the threshold to divide the patients into group A (ratio above the mean) and group B (ratio below the mean). The ultrastructure, proliferative capacity, and multidirectional differentiation ability were compared between the groups. Results At 9 months after surgery, the HHS and magnetic resonance imaging (MRI) findings improved by varying degrees. Based on the mean repair ratio of (62.2 ± 27.0)%, the threshold for dividing the patients into groups A and B was set to 62.2%. Better repair (group A) was associated with more rapid proliferation and a healthier ultrastructure. The cells in group A showed stronger specific staining signifying osteogenic and chondrogenic differentiation; alkaline phosphatase (ALP) activity, an indicator of osteogenic differentiation, was higher in group A than in group B (OD, 2.39 ± 0.44 and 1.85 ± 0.52; p < 0.05). Conclusions The quality of implanted stem cells is closely related to treatment efficacy and determines whether the defective self-repair in the necrotic area can be corrected to enhance repair and thus achieve the desired therapeutic outcome. Trial registration The trial registration number: ChiCTR-ORC-17011698 (retrospectively registered at 2017-06-19).
Collapse
Affiliation(s)
- Zhan Yu Wu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Center for Tissue Engineering and Stem Cells, Guizhou Medical University, Guiyang, China
| | - Qi Sun
- Yueyang Traditional Chinese Medicine Hospital, Hunan, China
| | - Ming Liu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu, China
| | - Brian E Grottkau
- Department of Orthopedics, Massachusetts General Hospital, Boston, MA, USA
| | - Zhi Xu He
- Center for Tissue Engineering and Stem Cells, Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China
| | - Qiang Zou
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Center for Tissue Engineering and Stem Cells, Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China. .,Center for Tissue Engineering and Stem Cells, Guizhou Medical University, Guiyang, China. .,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China. .,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
12
|
Li R, Lin QX, Liang XZ, Liu GB, Tang H, Wang Y, Lu SB, Peng J. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Res Ther 2018; 9:291. [PMID: 30359305 PMCID: PMC6202807 DOI: 10.1186/s13287-018-1018-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory disease that is associated with collapse of the femoral head, with a risk of hip arthroplasty in younger populations. Thus, there has been an increased focus on early interventions for ONFH that aim to preserve the native articulation. Stem cell therapy is a promising treatment, and an increasing number of recent studies have focused on this topic. Many clinical studies have reported positive outcomes of stem cell therapy for the treatment of ONFH. To improve the therapeutic effects of this approach, many related basic research studies have also been performed. However, some issues must be further explored, such as the appropriate patient selection procedure, the optimal stem cell selection protocol, the ideal injection number, and the safety of stem cell therapy. The purpose of this review is to summarize the available clinical studies and basic research related to stem cell therapy for ONFH.
Collapse
Affiliation(s)
- Rui Li
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qiu-Xia Lin
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xue-Zhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Guang-Bo Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - He Tang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yu Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shi-Bi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
13
|
Chen YX, Tao SC, Xu ZL, Yin WJ, Zhang YL, Yin JH, Gao YS, Zhang CQ. Novel Akt activator SC-79 is a potential treatment for alcohol-induced osteonecrosis of the femoral head. Oncotarget 2018; 8:31065-31078. [PMID: 28415692 PMCID: PMC5458189 DOI: 10.18632/oncotarget.16075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023] Open
Abstract
Alcohol is a leading risk factor for osteonecrosis of the femoral head (ONFH). We explored the molecular mechanisms underlying alcohol-induced ONFH and investigated the protective effect of the novel Akt activator SC-79 against this disease. We found that ethanol inhibited expression of the osteogenic genes RUNX2 and OCN, downregulated osteogenic differentiation, impaired the recruitment of Akt to the plasma membrane, and suppressed Akt phosphorylation at Ser473, thereby inhibiting the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. To assess SC-79′s ability to counteract the inhibitory effect of ethanol on Akt-Ser73 phosphorylation, we performed micro-computerized tomography and immunofluorescent staining of osteopontin, osteocalcin and collagen type 1 in a rat model of alcohol-induced ONFH. We found that SC-79 injections inhibited alcohol-induced osteonecrosis. These results show that alcohol-induced ONFH is associated with suppression of p-Akt-Ser473 in the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. We propose that SC-79 treatment to rescue Akt activation could be tested in the clinic as a potential therapeutic approach to preventing the development of alcohol-induced ONFH.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zheng-Liang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wen-Jing Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yue-Lei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun-Hui Yin
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
14
|
Wang C, Zang H, Zhou D. Bone morphogenetic protein-2 exhibits therapeutic benefits for osteonecrosis of the femoral head through induction of cartilage and bone cells. Exp Ther Med 2018; 15:4298-4308. [PMID: 29849774 PMCID: PMC5962870 DOI: 10.3892/etm.2018.5941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Osteonecrosis of the femoral head is an orthopedic disease caused by femoral head damage or insufficient blood supply, which leads to the death of bone cells and bone marrow. Osteonecrosis of the femoral head leads to changes in the structure of the femoral head, femoral head collapse and joint dysfunction. Bone morphogenetic protein-2 (BMP-2) exhibits beneficial effects on bone formation, repair and angiogenesis at the femoral head. In the present study, the therapeutic effects of recombinant human BMP-2 containing an Fc fragment (rBMP-2/Fc) were investigated on a steroid induced mouse model of osteonecrosis of the femoral head. Bone cell viability was used to determine the in vitro effects of rBMP-2/Fc. The therapeutic efficacies of rBMP-2/Fc on mice with osteonecrosis of the femoral head were evaluated using clinical arthritis scores. The expression levels of inflammatory factors in the mice were analyzed by reverse transcription-quantitative polymerase chain reaction. Histological analysis was used to evaluate the effects of rBMP-2/Fc on the femoral head. The results revealed that rBMP-2/Fc treatment significantly increased the IL-6, IL-10, vascular endothelial growth factor and macrophage colony-stimulating factor expression levels in synovial cells compared with the control group (P<0.01). Furthermore, it was observed that rBMP-2/Fc significantly improved the viability and growth of synovial cells (P<0.01) through the nuclear factor (NF)-κB signaling pathway. Treatment with rBMP-2/Fc significantly decreased receptor activator of NF-κB ligand expression levels. Furthermore, in vivo experiments demonstrated that rBMP-2/Fc treatment markedly relieved the arthralgia and damage caused by osteonecrosis of the femoral head. In conclusion, rBMP-2/Fc treatment may be beneficial for articular cartilage repair by the upregulation of angiogenesis factors through the down regulation of the NF-κB signaling pathway in mice with osteonecrosis of the femoral head. This preclinical data suggests that rBMP-2/Fc may be a promising novel agent for treatment of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huimei Zang
- Department of Cardiovascular Medicine, Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function, Jinan, Shandong 250012, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Tong S, Yin J, Liu J. Platelet-rich plasma has beneficial effects in mice with osteonecrosis of the femoral head by promoting angiogenesis. Exp Ther Med 2018; 15:1781-1788. [PMID: 29434765 PMCID: PMC5776555 DOI: 10.3892/etm.2017.5655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
Platelet-rich plasma (PRP) is autologous and multifunctional. Platelet concentrate from blood contains highly concentrated platelets and various types of cells, including growth factors. PRP promotes the recovery of cell proliferation and differentiation. Osteonecrosis of the femoral head is a disease caused by femoral head damage or an insufficient blood supply, which leads to the death of bone cells and abnormal bone marrow composition. The subsequent repair of bone cells may result in changes to the structure of femoral head, femoral head collapse and joint dysfunction. PRP may promote the repair of injured articular cartilage in patients with joint diseases through the removal of harmful inflammatory factors. In the present study, the therapeutic effects and primary mechanism of PRP action were investigated using a glucocorticoid-induced femoral head osteonecrosis mouse model. Dexamethasone (DEX) and phosphate-buffered saline were used as controls. The therapeutic efficacy of PRP to treat osteonecrosis in murine femoral heads was evaluated by assessing clinical arthritis scores. The present study indicated that mice with osteonecrosis of the femoral head treated with PRP exhibited downregulated expression of interleukin (IL)-17A, IL-1β, tumor necrosis factor-α, receptor activator of nuclear factor κ-B ligand, IL-6 and interferon-γ in the inflammatory tissue. In addition, the levels of hepatocyte growth factor, intercellular adhesion molecule-1, osteopontin, platelet-derived endothelial cell growth factor, vascular endothelial growth factor, platelet-derived growth factor, insulin-like growth factor-1 and transforming growth factor-β were increased following treatment with PRP. Joint tissue histological staining demonstrated that PRP alleviated osteonecrosis of the femoral head and reduced humoral and cellular immune responses that promoted beneficial effects on the histological parameters. Furthermore, the concentration of glucocorticoids were significantly decreased in the serum of PRP-treated mice with osteonecrosis compared with the DEX group (P<0.01). Notably, PRP promoted beneficial effects in mice with osteonecrosis of the femoral head by stimulating angiogenesis. Therefore, the present study indicated that treatment with PRP promotes beneficial effects by preventing joint inflammation, cartilage destruction and bone damage, and stimulating the repair of joint tissue in mice with osteonecrosis of the femoral head. These preclinical data suggest that PRP may be developed as a novel method of treating osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Shichao Tong
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200231, P.R. China
| | - Jimin Yin
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200231, P.R. China
| | - Ji Liu
- Department of Orthopedics, Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
16
|
Ying J, Wang P, Zhang S, Xu T, Zhang L, Dong R, Xu S, Tong P, Wu C, Jin H. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sci 2017; 192:84-90. [PMID: 29158053 DOI: 10.1016/j.lfs.2017.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
AIMS Transforming growth factor-β1 (TGF-β1) is a chondrogenic factor and has been reported to be able to enhance chondrocyte differentiation from bone marrow mesenchymal stem cells (BMSCs). Here we investigate the molecular mechanism through which TGF-β1 chronically promotes the repair of cartilage defect and inhibit chondrocyte hypertrophy. MAIN METHODS Animal models of full thickness cartilage defects were divided into three groups: model group, BMSCs group (treated with BMSCs/calcium alginate gel) and BMSCs+TGF-β1 group (treated with Lentivirus-TGF-β1-EGFP transduced BMSCs/calcium alginate gel). 4 and 8weeks after treatment, macroscopic observation, histopathological study and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were done to analyze phenotypes of the animals. BMSCs were transduced with Lentivirus-TGF-β1-EGFP in vitro and Western blot analysis was performed. KEY FINDINGS We found that TGF-β1-expressiing BMSCs improved the repair of the cartilage defect. The impaired cartilage contained higher amount of GAG and type II collagen and was integrated to the surrounding normal cartilage and higher content of GAG and type II collagen. The major events include increased expression of type II collagen following Smad2/3 phosphorylation, and inhibition of cartilage hypertrophy by increasing Yes-associated protein-1 (YAP-1) and inhibiting Runx2 and Col10 after the completion of chondrogenic differentiation. SIGNIFICANCE We conclude that TGF-β1 is beneficial to chondrogenic differentiation of BMSCs via canonical Smad pathway to promote early-repairing of cartilage defect. Furthermore, TGF-β1 inhibits chondrocyte hypertrophy by decreasing hypertrophy marker gene expression via Hippo signaling. Long-term rational use of TGF-β1 may be an alternative approach in clinic for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Jun Ying
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shanxing Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Taotao Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Lei Zhang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Rui Dong
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shibing Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Chengliang Wu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| | - Hongting Jin
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China.
| |
Collapse
|
17
|
Chen C, Qu Z, Yin X, Shang C, Ao Q, Gu Y, Liu Y. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study. Mol Med Rep 2016; 14:4209-4215. [PMID: 27634376 PMCID: PMC5101965 DOI: 10.3892/mmr.2016.5745] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023] Open
Abstract
This is a retrospective analysis of the clinical effects of transplant of mesenchymal stem cells (MSCs) derived from human umbilical cord-derived MSCs (hUC-MSCs) for the treatment of osteonecrosis of the femoral head (ONFH). The biological characteristics of hUC-MSCs were assessed using flow cytometry. Nine eligible patients were enrolled in the study as they adhered to the Association Research Circulation Osseous (ARCO) classification of stage II–IIIa, and hUC-MSCs were grafted by intra-arterial infusion. Organize effective perfusion was assessed using the oxygen delivery index (ODI). The results showed that the ODI was increased at three days post-operation. The MRI results revealed that at 12 and 24 months after treatment, the necrotic volume of the femoral heads was significantly reduced. No obvious abnormalities were observed. Taken together, these data indicate that intra-arterially infused hUC-MSCs migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. This finding suggested that intra-arterial infusion of hUC-MSCs MSCs is a feasible and relatively safe method for the treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Chun Chen
- Department of Vascular Interventional Surgery, Siping Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhiguo Qu
- Department of Orthopaedic Surgery, Siping Hospital of China Medical University, Siping, Jilin 136000, P.R. China
| | - Xiaoguang Yin
- Tuhua Bioengineering Company Ltd., Siping, Jilin 136000, P.R. China
| | - Chunyu Shang
- Department of Vascular Interventional Surgery, Siping Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yongquan Gu
- Department of Vascular Interventional Surgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Ying Liu
- Tuhua Bioengineering Company Ltd., Siping, Jilin 136000, P.R. China
| |
Collapse
|
18
|
Wang WZ. Microcirculatory Response In Vivo on Local Intraarterial Infusion of Autogenic Adipose-derived Stem Cells or Stromal Vascular Fraction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1067. [PMID: 27757364 PMCID: PMC5055030 DOI: 10.1097/gox.0000000000001067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/12/2016] [Indexed: 01/25/2023]
Abstract
Both adipose-derived stem cells (ASCs) and stromal vascular fraction (SVF) have been demonstrated to have regenerative properties with therapeutic potential for numerous diseases through local or topical applications. However, it is unclear whether ASC or SVF can be delivered systemically through an intra-arterial infusion. The purpose of this study was to examine the microcirculatory response in vivo on local intraarterial infusion of autogenic ASCs or SVF in a vascular pedicle isolated rat cremaster microcirculation model. MATERIALS AND METHODS Fat tissue was surgically harvested from the flanks of male Sprague-Dawley rats (n = 12) and processed for SVF isolation. Some SVF samples were cultured for 24 hours for ASC purification. The autogenic SVF (1 × 105) cells (n = 6) or purified ASC (1 × 105) cells (n = 6) cells were infused into the microcirculation of cremaster muscle at a speed of 0.05 mL/min through the cannulation of femoral artery. As this is a vascular pedicle isolated preparation, the infused SVF or ASC cells went nowhere but the cremaster muscle. The video image of the microcirculation was monitored in real time during infusion. RESULTS Arteriole diameter was measured as A1 (100-160 µm), A2 (40-80 µm), and A3/A4 (10-30 µm). Capillary perfusion was quantified in 18 capillary fields of each muscle. There was a significant increase in the diameter of terminal arterioles (P = 0.049) and the capillary density (P = 0.02) after ASC intraarterial infusion. However, a significant cell aggregation, embolisms, and arterial obstruction were observed in the microcirculation in every case during SVF infusion. CONCLUSIONS Intraarterial infusion is an appropriate route for the delivery of autogenic ASCs, but not of SVF. SVF-induced microembolisms were the reason for narrowing or blocking the lumen of terminal arterioles, resulting in no flow in the corresponding capillaries.
Collapse
Affiliation(s)
- Wei Z Wang
- Division of Plastic Surgery, Department of Surgery, School of Medicine, University of Nevada, Las Vegas, Nev
| |
Collapse
|