1
|
Aladhadh M, Nasser Binjawhar D, Abd El-Kader Ebrahim HNED, Radhi KS, Almatrafi M, Fayad E, Al-Saman MA, Elsanhoty RM. Investigation of Biogenic Amine Levels and Microbiological Activity as Quality Markers in Some Dairy and Fish Products in Food Markets in the Kingdom of Saudi Arabia. ACS OMEGA 2024; 9:19193-19202. [PMID: 38708229 PMCID: PMC11064202 DOI: 10.1021/acsomega.3c10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
This study aimed to verify the presence of biogenic amines (BAs) and evaluate the microbiological activity of some food samples collected from retail stores in the Kingdom of Saudi Arabia. A total of thirty-five dairy and fish products were collected and analyzed for BAs, including putrescine (PUT), cadaverine (CAD), spermidine (SPE), histamine (HIS), spermine (SPR), and tyramine (TYR), as well as for total colony count (TCC), lactic acid bacteria (LAB), Enterobacteriaceae, yeast and mold (Y and M), coliforms, and aerobic sporulation count (ASF). The thin layer chromatography (TLC) method was used in the analytical methodology to identify the BAs. The results showed the presence of BAs in all dairy products, but their concentration did not exceed the maximum permissible limit, which in contrast was established by the Food and Drug Administration (FDA) at 10 mg/100 g. The amounts of BAs in fish products varied significantly. All fish product samples contained levels of BAs below the permissible limit. Results of an independent study also indicated potential toxicity at levels of BAs (>10 mg/100 g) in Egyptian herring. Enterobacteriaceae and the coli group were present in higher concentrations in the Egyptian herring samples, whereas other samples (particularly frozen shrimp) showed increased TCC levels with a higher concentration of histamine-producing bacteria. From a consumer safety perspective, this study also indicated that food samples generally contained acceptable levels of BAs. In conclusion, there is a need to improve and standardize food quality and hygiene practices during production and storage to ensure human safety and prevent HIS formation.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department
of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi
Arabia
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Khadija S. Radhi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manal Almatrafi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department
of Biotechnology, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud A. Al-Saman
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| | - Rafaat M. Elsanhoty
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| |
Collapse
|
2
|
So SH, Lee JH, Kim HW, Rhee HI, Lee DC. Anti-inflammatory effect of pepper extract with high polyamine levels; inhibition of ERK/MAPK pathway in mice. Food Sci Biotechnol 2024; 33:677-687. [PMID: 38274190 PMCID: PMC10805694 DOI: 10.1007/s10068-023-01333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 01/27/2024] Open
Abstract
Polyamines have been reported to have cell proliferative and anti-inflammatory effects on normal metabolism in the body. This study aimed to investigate polyamine content of AIG01 pepper and the anti-inflammatory effect of AIG01 pepper extract (PAE) in mice. Polyamine content was analyzed by HPLC after acid hydrolysis of peppers with different acidic solvents. AIG01 pepper has the highest total polyamine content at about 1.5 mg/g. In LPS-stimulated RAW264.7, PAE inhibits nitric oxide production in a concentration-dependent manner and decreased the levels of pro-inflammatory cytokines. PAE has been shown to inhibit phosphorylation of MAPK/ERK. In TPA-stimulated Balb/C, PAE treatment showed tissue-level reductions in pro-inflammatory cytokines, reductions in ear thickness, and inhibition of neutrophil invasion. The polyamine content, polyamine extraction efficiency and anti-inflammatory effect of AIG01 obtained in this study suggest that it is useful as a raw material for the treatment of inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01333-x.
Collapse
Affiliation(s)
- Sun Hyeon So
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jae Hoon Lee
- Department of Environmental and Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee Woong Kim
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hae Ik Rhee
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Deug Chan Lee
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Wang T, Chen Y, Hou C, Qiao X. PEG-modified halloysite as a hydrophilic interaction and cation exchange mixed-mode sorbent for solid-phase extraction of biogenic amines in fish samples. Anal Bioanal Chem 2022:10.1007/s00216-022-04441-5. [PMID: 36422664 DOI: 10.1007/s00216-022-04441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
A novel type of PEG-modified halloysite was prepared and used as a hydrophilic interaction and cation exchange mixed-mode sorbent for solid-phase extraction of biogenic amines in fish samples. The eluates were analyzed by high-performance liquid chromatography-ultraviolet detection after the derivatization with benzoyl chloride. The developed sorbent was characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, zeta potential analyzer, and thermo-gravimetric analysis. After the optimization of various parameters influencing the extraction efficiency, the PEG-modified halloysite-based SPE method was evaluated. The adsorption capacities of putrescine, spermine, phenethylamine, and histamine were as high as 9.3, 8.5, 5.7, and 5.6 mg g-1, respectively. Satisfactory reproducibility of sorbent preparation was obtained with within-batch and batch-to-batch relative standard deviations (RSDs) lower than 3.9% and 8.6%, respectively. The biogenic amine spiking recoveries in fish samples ranged from 84.3 to 105.5% with good RSDs lower than 7.8%. Intra-day and inter-day precision, expressed as RSDs, were better than 8.8%. The limits of detection of histamine, putrescine, phenethylamine, and spermine were 9.4, 1.9, 0.5, and 0.9 μg L-1, respectively. This work provides a new hydrophilic interaction and cation exchange mixed-mode sorbent and is successfully applied to the extraction of trace biogenic amines from fish samples.
Collapse
|
4
|
Mei X, Hu L, Song Y, Zhou C, Mu R, Xie X, Li J, Xiang L, Weng Q, Yang Z. Heterologous Expression and Characterization of Tea ( Camellia sinensis) Polyamine Oxidase Homologs and Their Involvement in Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11880-11891. [PMID: 36106904 DOI: 10.1021/acs.jafc.2c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyamine oxidase (PAO) is a key enzyme maintaining polyamine homeostasis, which affects plant physiological activities. Until now, the gene members and function of PAOs in tea (Camellia sinenesis) have not been fully identified. Here, through the expression in Escherichia coli and Nicotiana benthamiana, we identified six genes annotated as CsPAO in tea genome and transcriptome and determined their enzyme reaction modes and gene expression profiles in tea cultivar 'Yinghong 9'. We found that CsPAO1,2,3 could catalyze spermine, thermospermine, and norspermidine, and CsPAO2,3 could catalyze spermidine in the back-conversion mode, which indicated that the precursor of γ-aminobutyric acid might originate from the oxidation of putrescin but not spermidine. We further investigated the changes of CsPAO activity with temperature and pH and their stability. Kinetic parameters suggested that CsPAO2 was the major PAO modifying polyamine composition in tea, and it could be inactivated by β-hydroxyethylhydrazine and aminoguanidine. Putrescine content and CsPAO2 expression were high in tea flowers. CsPAO2 responded to wound, drought, and salt stress; CsPAO1 might be the main member responding to cold stress; anoxia induced CsPAO3. We conclude that in terms of phylogenetic tree, enzyme characteristics, and expression profile, CsPAO2 might be the dominant CsPAO in the polyamine degradation pathway.
Collapse
Affiliation(s)
- Xin Mei
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Yuyan Song
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xintai Xie
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Jing Li
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Lan Xiang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Qingbei Weng
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Ziyin Yang
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
5
|
Gampe N, Ladocsi L, Fejős I, Boldizsár I, Darcsi A, Béni S. Enantioseparation and quantitative determination of two homologous beta amino acids found in Fabaceae plants. J Chromatogr A 2022; 1675:463089. [DOI: 10.1016/j.chroma.2022.463089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
6
|
Liu D, Wang K, Xue X, Wen Q, Qin S, Suo Y, Liang M. The Effects of Different Processing Methods on the Levels of Biogenic Amines in Zijuan Tea. Foods 2022; 11:foods11091260. [PMID: 35563983 PMCID: PMC9103763 DOI: 10.3390/foods11091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of processing methods on the content of biogenic amines in Zijuan tea by using derivatization and hot trichloroacetic acid extraction with HPLC-UV. The results showed that the most abundant biogenic amine in the original leaves was butylamine, followed by ethylamine, methylamine, 1,7-diaminoheptane, histamine, tyramine, and 2-phenethylamine. However, during the process of producing green tea, white tea, and black tea, the content of ethylamine increased sharply, which directly led to their total contents of biogenic amines increasing by 184.4%, 169.3%, and 178.7% compared with that of the original leaves, respectively. Unexpectedly, the contents of methylamine, ethylamine, butylamine, and tyramine in dark tea were significantly reduced compared with those of the original leaves. Accordingly, the total content of biogenic amines in dark tea was only 161.19 μg/g, a reduction of 47.2% compared with that of the original leaves, indicating that the pile-fermentation process could significantly degrade the biogenic amines present in dark tea.
Collapse
Affiliation(s)
- Dandan Liu
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Kang Wang
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Xiaoran Xue
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Qiang Wen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
| | - Shiwen Qin
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Yukai Suo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Mingzhi Liang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China;
| |
Collapse
|
7
|
Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022; 11:foods11030353. [PMID: 35159503 PMCID: PMC8834261 DOI: 10.3390/foods11030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/12/2023] Open
Abstract
The formation of biogenic amines in food and beverages is mainly due to the presence of proteins and/or free amino acids that represent the substrates for microbial or natural enzymes with decarboxylation or amination activity. Fermentation occurring in many alcoholic beverages, such as wine, beer, cider, liqueurs, as well as coffee and tea, is one of the main processes affecting their production. Some biogenic amines can also be naturally present in some fruit juices or fruit-based drinks. The dietary intake of such compounds should consider all their potential sources by both foods and drinks, taking in account the health impact on some consumers that represent categories at risk for a deficient metabolic activity or assuming inhibiting drugs. The most important tool to avoid their adverse effects is based on prevention through the selection of lactic acid bacteria with low decarboxylating activity or good manufacturing practices hurdling the favoring conditions on biogenic amines' production.
Collapse
|
8
|
Priming Effects of Cover Cropping on Bacterial Community in a Tea Plantation. SUSTAINABILITY 2021. [DOI: 10.3390/su13084345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acidic nature of red soil commonly found in tea plantations provides unique niches for bacterial growth. These bacteria as well as soil properties are dynamic and vary with agricultural management practices. However, less is known about the influence of manipulation such as cover cropping on bacterial communities in tea plantations. In this study a field trial was conducted to address the short-term effects of soybean intercropping on a bacterial community. Diversity, metabolic potential and structure of the bacterial community were determined through community level physiological profiling and amplicon sequencing approaches. Cover cropping was observed to increase soil EC, available P, K, and microelements Fe, Mn, Cu, and Zn after three months of cultivation. Bacterial functional diversity and metabolic potential toward six carbon source categories also increased in response to cover cropping. Distinct bacterial communities among treatments were revealed, and the most effective biomarkers, such as Acidobacteriaceae, Burkholderiaceae, Rhodanobacteraceae, and Sphingomonadaceae, were identified in cover cropping. Members belonging to these families are considered as organic matter decomposers and/or plant growth promoting bacteria. We provided the first evidence that cover cropping boosted both copiotrophs (Proteobacteria) and oligotrophs (Acidobacteria), with potentially increased functional stability, facilitated nutrient cycling, and prospective benefits to plants in the tea plantation.
Collapse
|
9
|
Green coffee derived supplements and infusions as a source of polyamines and free amino acids. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03609-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractThis work reports on monoamines (MA), diamines (DA) and polyamines (PA) as well as free amino acids (fAA) in nutritional supplements and infusions derived from green coffee beans. Samples were investigated using a ultra-high performance liquid chromatography UV/FLR method, which was validated regarding specificity, linearity, range, precision, accuracy and limits of detection and quantification. Nutritional supplements based on green coffee beans showed large amounts of total amines ranging from 1090 to 2593 mg/kg, with exceptional high levels of spermidine up to 724 mg/kg, and a content of fAA from 4004 to 12,389 mg/kg. Infusions brewed from green coffee beans showed much lower contents of amines (14–17 mg/L) and fAA (78–100 mg/L). However, if the customary edible portion was considered, infusions from green coffee were a mainly better source for MA and PA as well for fAA, compared to nutritional supplements. Tryptamine and tyramine were predominant as MA putrescine as DA, and spermidine as PA, respectively.
Graphic abstract
Collapse
|
10
|
Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1737450. [PMID: 32375557 PMCID: PMC8570756 DOI: 10.1080/15592324.2020.1737450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
Neurotransmitters (NTs) such as acetylcholine, biogenic amines (dopamine, noradrenaline, adrenaline, histamine), indoleamines [(melatonin (MEL) & serotonin (SER)] have been found not only in mammalians, but also in diverse living organisms-microorganisms to plants. These NTs have emerged as potential signaling molecules in the last decade of investigations in various plant systems. NTs have been found to play important roles in plant life including-organogenesis, flowering, ion permeability, photosynthesis, circadian rhythm, reproduction, fruit ripening, photomorphogenesis, adaptation to environmental changes. This review will provide an overview of recent advancements on the physiological and molecular mechanism of NTs in plants. Moreover, molecular crosstalk of SER and MEL with various biomolecules is also discussed. The study of these NTs may serve as new understanding of the mechanisms of signal transmission and cell sensing in plants subjected to various environmental stimulus.
Collapse
Affiliation(s)
- Ramakrishna Akula
- Bayer Crop Science division, Vegetable R & D Department, Chikkaballapur, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani, India
| |
Collapse
|
11
|
Abstract
Biogenic amines are ubiquitous bioactive compounds that are synthesized by living organisms and perform essential functions for their metabolism. In the human diet, their excessive intake can cause food poisoning. In food, especially in alcohol-free beverages, biogenic amines can be synthesized by enzymes, naturally present in raw materials, or by microorganisms, which may be naturally present in the matrix or be added during beverage transformation processes. For this reason, in alcohol-free beverages, biogenic amine amount can be considered, above a certain level, as undesired microorganism activity. Therefore, it is important to evaluate the biogenic amine profile of non-alcoholic beverages in order to monitor food quality and safety. Moreover, biogenic amines can be taken into account by industries in order to monitor production processes and products. This review article provides an overview on the biogenic amine profile of alcohol-free beverages (plant milk, nervine drinks, soft drinks, and fruit juices). Furthermore, the clinical and toxicological effects, the biogenic amines legislation, and biogenic amine synthesis have been evaluated in non-alcoholic beverages.
Collapse
|
12
|
Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O'Sullivan CK, El-Shahawi MS. Biogenic Amines Formation Mechanism and Determination Strategies: Future Challenges and Limitations. Crit Rev Anal Chem 2019; 50:485-500. [PMID: 31486337 DOI: 10.1080/10408347.2019.1657793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The evolution in foodstuff-monitoring processes has increased the number of studies on biogenic amines (BAs), in recent years. This trend with future perspective needs to be assembled to address the associated health risks. Thus, this study aims to cover three main aspects of BAs: (i) occurrence, physiology, and toxicological effects, most probable formation mechanisms and factors controlling their growth; (ii) recent advances, strategies for determination, preconcentration steps, model technique, and nature of the matrix; and (iii) milestone, limitations with existing methodologies, future trends, and detailed expected developments for clinical use and on-site ultra-trace determination. The core of the ongoing review will discuss recent trends in pre-concentration toward miniaturization, automation, and possible coupling with electrochemical techniques, surface-enhanced Raman scattering, spectrofluorimetry, and lateral flow protocols to be exploited for the development of rapid, facile, and sensitive on-site determination strategies for BAs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - G I Mohammed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, Makka, Saudi Arabia
| | - D A Al-Eryani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Z M Saigl
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - C K O'Sullivan
- Nanobiotechnology & Bioanalysis Group, Department d Enginyeria Quimica, Universitat i Virgili, Tarragona, Spain
| | - M S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Spizzirri U, Carullo G, De Cicco L, Crispini A, Scarpelli F, Restuccia D, Aiello F. Synthesis and characterization of a (+)-catechin and L-(+)-ascorbic acid cocrystal as a new functional ingredient for tea drinks. Heliyon 2019; 5:e02291. [PMID: 31463397 PMCID: PMC6709408 DOI: 10.1016/j.heliyon.2019.e02291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022] Open
Abstract
Tea (Camellia Sinensis) is one of the most popular drink, consumed as infusion or bottled ready to drink beverages. Although tea leaves contain many antioxidants compounds, after processing they can drastically decrease, sometimes up to a full degradation, as in the case of catechin, a very healthy flavan-3-ol. In this context, the synthesis of a cocrystal between (+)-catechin and L-(+)-ascorbic acid, was proved to be a useful strategy to make a new ingredient able to ameliorate the antioxidant profile of both infusions and bottled teas. The obtained cocrystal showed a three-fold higher solubility than (+)catechin and its formation was elucidated unambiguously by FT-IR, thermal (DSC) and diffraction (PXRD) analyses. Antioxidant characteristics of the samples were evaluated by colorimetric assays. As expected, infusions showed much better antioxidant features than ready-to-use lemon and peach teas. The same trend was confirmed after the addition of the cocrystal at two concentration levels. In particular, supplementation at concentration of 2 mg mL-1 improved the bottled tea antioxidant values to the level showed by the not-added infusion tea.
Collapse
Affiliation(s)
- U.G. Spizzirri
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - G. Carullo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - L. De Cicco
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - A. Crispini
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio MAT_IN LAB, Università della Calabria, Rende (CS), Italy
| | - F. Scarpelli
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio MAT_IN LAB, Università della Calabria, Rende (CS), Italy
| | - D. Restuccia
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - F. Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| |
Collapse
|
14
|
Liu SJ, Xu JJ, Ma CL, Guo CF. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem 2018; 266:275-283. [PMID: 30381186 DOI: 10.1016/j.foodchem.2018.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 02/08/2023]
Abstract
The six biogenic amines in sausage and cheese were analyzed by HPLC with UV detection after off-line derivatization with dansyl chloride, 9-fluorenylmethoxycarbonyl chloride, benzoyl chloride and dabsyl chloride, respectively. The results showed that both the off-line 9-fluorenylmethoxycarbonyl and dabsyl derivatization were not suitable for HPLC analysis of biogenic amines when batch injection was used because the derivatives were instable, whereas both the off-line dansyl and benzoyl derivatization were suitable for HPLC analysis of biogenic amines when batch injection was used, but the latter needed to maintain the derivatives at 4 °C to ensure that benzoylated tyramine was not degraded when waiting for the analysis. The off-line dansyl derivatization had an obvious advantage in the analysis of biogenic amines in sausage and cheese samples by HPLC combined with batch injection because the method has a wider linear range and higher sensitivity, accuracy, precision and stability of the derivatives.
Collapse
Affiliation(s)
- Si-Jin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Juan-Juan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chang-Lu Ma
- Department of Food and Bio-engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Chun-Feng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Szeitz A, Bandiera SM. Analysis and measurement of serotonin. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- András Szeitz
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| | - Stelvio M. Bandiera
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|