1
|
Nguyen AN, Plotkin AL, Odumade OA, De Armas L, Pahwa S, Morrocchi E, Cotugno N, Rossi P, Foster C, Domínguez-Rodríguez S, Tagarro A, Syphurs C, Diray-Arce J, Fatou B, Ozonoff A, Levy O, Palma P, Smolen KK. Effective early antiretroviral therapy in perinatal-HIV infection reduces subsequent plasma inflammatory profile. Pediatr Res 2023; 94:1667-1674. [PMID: 37308683 DOI: 10.1038/s41390-023-02669-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The long-term immunologic effects of antiretroviral therapy (ART) in children with perinatally-acquired HIV (PHIV) have not been fully elucidated. Here, we investigated how the timing of ART initiation affects the long-term immune profile of children living with PHIV by measuring immunomodulatory plasma cytokines, chemokines, and adenosine deaminases (ADAs). METHODS 40 PHIV participants initiated ART during infancy. 39 participant samples were available; 30 initiated ART ≤6 months (early-ART treatment); 9 initiated ART >6 months and <2 years (late-ART treatment). We compared plasma cytokine and chemokine concentrations and ADA enzymatic activities between early-ART and late-ART treatment 12.5 years later and measured correlation with clinical covariates. RESULTS Plasma concentrations of 10 cytokines and chemokines (IFNγ, IL-12p70, IL-13, IL-17A, IL-IRA, IL-5, IL-6, and IL-9 as well as CCL7, CXCL10), ADA1, and ADA total were significantly higher in late-ART compared to early-ART treatment. Furthermore, ADA1 was significantly positively correlated with IFNγ, IL-17A, and IL-12p70. Meanwhile, total ADA was positively correlated with IFNγ, IL-13, IL-17A, IL-1RA, IL-6, and IL-12p70 as well as CCL7. CONCLUSIONS Elevation of several pro-inflammatory plasma analytes in late-ART despite 12.5 years of virologic suppression compared to early-ART treatment suggests that early treatment dampens the long-term plasma inflammatory profile in PHIV participants. IMPACT This study examines differences in the plasma cytokine, chemokine, and ADA profiles 12.5 years after treatment between early (≤6months) and late (>6 months and <2 years) antiretroviral therapy (ART) treatment initiation in a cohort of European and UK study participants living with PHIV. Several cytokines and chemokines (e.g., IFNγ, IL-12p70, IL-6, and CXCL10) as well as ADA-1 are elevated in late-ART treatment in comparison to early-ART treatment. Our results suggest that effective ART treatment initiated within 6 months of life in PHIV participants dampens a long-term inflammatory plasma profile as compared to late-ART treatment.
Collapse
Affiliation(s)
- Athena N Nguyen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Alec L Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, USA
| | - Lesley De Armas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elena Morrocchi
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Caroline Foster
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, UK
| | - Sara Domínguez-Rodríguez
- Fundación de Investigación Biomédica Hospital 12 de Octubre. Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre. Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Sofía. Fundación para la Investigación Biomédica e Innovación del Hospital Infanta Sofía y del Henares (FIIB HUIS HHEN). Universidad Europea de Madrid, Madrid, Spain
| | - Caitlin Syphurs
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Kinga K Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
du Toit LDV, Prinsloo A, Steel HC, Feucht U, Louw R, Rossouw TM. Immune and Metabolic Alterations in Children with Perinatal HIV Exposure. Viruses 2023; 15:v15020279. [PMID: 36851493 PMCID: PMC9966389 DOI: 10.3390/v15020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.
Collapse
Affiliation(s)
- Louise D V du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Andrea Prinsloo
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Hematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ute Feucht
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Pediatrics, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Dickinson M, Kliszczak AE, Giannoulatou E, Peppa D, Pellegrino P, Williams I, Drakesmith H, Borrow P. Dynamics of Transforming Growth Factor (TGF)-β Superfamily Cytokine Induction During HIV-1 Infection Are Distinct From Other Innate Cytokines. Front Immunol 2020; 11:596841. [PMID: 33329587 PMCID: PMC7732468 DOI: 10.3389/fimmu.2020.596841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers rapid induction of multiple innate cytokines including type I interferons, which play important roles in viral control and disease pathogenesis. The transforming growth factor (TGF)-β superfamily is a pleiotropic innate cytokine family, some members of which (activins and bone morphogenetic proteins (BMPs)) were recently demonstrated to exert antiviral activity against Zika and hepatitis B and C viruses but are poorly studied in HIV-1 infection. Here, we show that TGF-β1 is systemically induced with very rapid kinetics (as early as 1-4 days after viremic spread begins) in acute HIV-1 infection, likely due to release from platelets, and remains upregulated throughout infection. Contrastingly, no substantial systemic upregulation of activins A and B or BMP-2 was observed during acute infection, although plasma activin levels trended to be elevated during chronic infection. HIV-1 triggered production of type I interferons but not TGF-β superfamily cytokines from plasmacytoid dendritic cells (DCs) in vitro, putatively explaining their differing in vivo induction; whilst lipopolysaccharide (but not HIV-1) elicited activin A production from myeloid DCs. These findings underscore the need for better definition of the protective and pathogenic capacity of TGF-β superfamily cytokines, to enable appropriate modulation for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew Dickinson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
High Plasma Soluble CD163 During Infancy Is a Marker for Neurocognitive Outcomes in Early-Treated HIV-Infected Children. J Acquir Immune Defic Syndr 2019; 81:102-109. [PMID: 30768490 DOI: 10.1097/qai.0000000000001979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocyte activation may contribute to neuronal injury in aviremic HIV-infected adults; data are lacking in children. We examined the relation between monocyte activation markers and early and long-term neurodevelopmental outcomes in early-treated HIV-infected children. SETTING Prospective study of infant and child neurodevelopmental outcomes nested within a randomized clinical trial (NCT00428116) and extended cohort study in Kenya. METHODS HIV-infected infants (N = 67) initiated antiretroviral therapy (ART) at age <5 months. Plasma soluble (s) CD163 (sCD163), sCD14, and neopterin were measured before ART (entry) and 6 months later. Milestone attainment was ascertained monthly during 24 months, and neuropsychological tests were performed at 5.8-8.2 years after initiation of ART (N = 27). The relationship between neurodevelopment and sCD163, sCD14, and neopterin at entry and 6 months after ART was assessed using Cox proportional hazards models and linear regression. RESULTS Infants with high entry sCD163 had unexpected earlier attainment of supported sitting (5 vs 6 months; P = 0.006) and supported walking (10 vs 12 months; P = 0.02) with trends in adjusted analysis. Infants with high 6-month post-ART sCD163 attained speech later (17 vs 15 months; P = 0.006; adjusted hazard ratio, 0.47; P = 0.02), threw toys later (18 vs 17 months; P = 0.01; adjusted hazard ratio, 0.53; P = 0.04), and at median 6.8 years after ART, had worse neuropsychological test scores (adj. mean Z-score differences, cognition, -0.42; P = 0.07; short-term memory, -0.52; P = 0.08; nonverbal test performance, -0.39, P = 0.05). CONCLUSIONS Before ART, monocyte activation may reflect transient neuroprotective mechanisms in infants. After ART and viral suppression, monocyte activation may predict worse short- and long-term neurodevelopment outcomes.
Collapse
|
5
|
Steel HC, Venter WDF, Theron AJ, Anderson R, Feldman C, Kwofie L, Cronjé T, Arullapan N, Rossouw TM. Effects of Tobacco Usage and Antiretroviral Therapy on Biomarkers of Systemic Immune Activation in HIV-Infected Participants. Mediators Inflamm 2018; 2018:8357109. [PMID: 30622435 PMCID: PMC6304812 DOI: 10.1155/2018/8357109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Like HIV infection, smoking, which is common among HIV-infected persons, is associated with chronic, systemic inflammation. However, the possible augmentative effects of HIV infection and smoking and other types of tobacco usage on indices of systemic inflammation and the impact of combination antiretroviral therapy (cART) thereon remain largely unexplored and represent the focus of the current study. Of the total number of HIV-infected persons recruited to the study (n = 199), 100 were categorised as pre-cART and 99 as virally suppressed (HIV viral load < 40 copies/mL). According to serum cotinine levels, 144 and 55 participants were categorised as nonusers and users of tobacco, respectively. In addition to cytokines (IL-6, IL-8, and TNF-α) and chemokines (IP-10, MIG, IL-8, MCP-1, and RANTES), other biomarkers of systemic inflammation included C-reactive protein (CRP), β2-microglobulin, and those of neutrophil activation [ICAM-1, L-selectin, matrix metalloproteinase-9 (MMP-9)], microbial translocation (soluble CD14, LPS-binding protein), and oxidative stress (cyclophilin A, surfactant D). These were measured using multiplex bead array, ELISA, and immunonephelometric procedures. Viral suppression was associated with significant decreases in the levels of most of the biomarkers tested (P < 0.0037-0.0008), with the exceptions of CRP, cyclophilin A, and MMP-9. With respect to tobacco usage, irrespective of cART status, circulating levels of β2-microglobulin, cyclophilin A, and RANTES were significantly elevated (P < 0.042-0.012) in users vs nonusers. Additional analysis of the groups of tobacco users and nonusers according to cART status revealed high levels of RANTES in pre-cART/tobacco users relative to the three other subgroups (P < 0.004-0.0001), while more modest increases in cyclophilin A and MMP-9 (P < 0.019-0.027) were observed in comparison with the cART/tobacco user subgroup. Notwithstanding the efficacy of cART in attenuating HIV-associated, chronic systemic inflammation, the current study has identified RANTES as being significantly and seemingly selectively increased in those with active HIV infection who use tobacco, a mechanism which may underpin augmentative proinflammatory activity.
Collapse
Affiliation(s)
- Helen C. Steel
- Department of Immunology, University of Pretoria, South Africa
- Institute for Cellular and Molecular Medicine, University of Pretoria, South Africa
| | - W. D. Francois Venter
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, South Africa
| | | | - Ronald Anderson
- Department of Immunology, University of Pretoria, South Africa
- Institute for Cellular and Molecular Medicine, University of Pretoria, South Africa
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Luyanda Kwofie
- Department of Immunology, University of Pretoria, South Africa
- Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Tanita Cronjé
- Department of Statistics, University of Pretoria, South Africa
| | - Natasha Arullapan
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, University of Pretoria, South Africa
- Institute for Cellular and Molecular Medicine, University of Pretoria, South Africa
| |
Collapse
|
6
|
IP-10 is highly involved in HIV infection. Cytokine 2018; 115:97-103. [PMID: 30472104 DOI: 10.1016/j.cyto.2018.11.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Interferon-γ (IFN-γ)-induced protein 10 (IP-10 or CXCL-10) is a chemokine involved in trafficking immune cells to inflammatory sites. Numerous studies have reported abnormally high plasma IP-10 levels in the context of human immunodeficiency virus (HIV) infection, and IP-10 is considered an important pro-inflammatory factor in the HIV disease process. The data regarding the roles of IP-10 in HIV infection required collation; this review summarizes the biological characteristics of IP-10, the positive association between plasma IP-10 levels and HIV disease progression, the effect of IP-10 on human immune cells, and potential related mechanisms. This review provides important insights into the role of IP-10 in HIV monitoring and treatment.
Collapse
|
7
|
Theron AJ, Anderson R, Rossouw TM, Steel HC. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders. Front Immunol 2017; 8:1461. [PMID: 29163528 PMCID: PMC5673850 DOI: 10.3389/fimmu.2017.01461] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1), which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Annette J. Theron
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Ronald Anderson
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Helen C. Steel
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Mhandire K, Mlambo T, Zijenah LS, Duri K, Mateveke K, Tshabalala M, Mhandire DZ, Musarurwa C, Wekare PT, Mazengera LR, Matarira HT, Stray-Pedersen B. Plasma IP-10 Concentrations Correlate Positively with Viraemia and Inversely with CD4 Counts in Untreated HIV Infection. Open AIDS J 2017; 11:24-31. [PMID: 28553429 PMCID: PMC5427702 DOI: 10.2174/1874613601711010024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
Background: Chronic immune activation is a feature of HIV infection associated with accelerated HIV disease progression. There is conflicting data on the association of biomarkers of immune activation with traditional markers of HIV disease progression; CD4 counts and viral load (VL). Objective: The study aimed to determine the association of biomarkers of immune activation; interferon (IFN)-γ-induced protein 10 (IP-10) and soluble cluster of differentiation 14 (sCD14) in chronic HIV infection with traditional markers of HIV disease progression. Methods: We collected demographic data, enumerated CD4 counts and quantified VL in 183 antiretroviral therapy (ART)-naive adults with chronic HIV infection. Plasma concentrations of IP-10 and sCD14 were quantified in the ART-naive adults with chronic HIV infection and 75 HIV-uninfected controls. Results: IP-10 concentrations were significantly higher in the HIV-infected group (median; 257.40pg/ml, IQR; 174.08-376.32) than in the HIV-uninfected (median; 86.19pg/ml, IQR; 67.70-116.39) (P<0.001). Similarly, sCD14 concentrations were significantly higher in the HIV-infected (median; 1.45µg/ml, IQR; 1.02-2.16) group than in the controls (median; 0.89µ/ml, IQR; 0.74-1.18) (P<0.001). High log10 IP-10 concentrations were positively correlated with high log10 viral loads (Spearman’s correlation coefficient [R]=0.21, P=0.003) and inversely correlated with low CD4 counts (R= -0.19, P=0.011). In contrast, log10 sCD14 was not significantly associated with either log10 viral loads (R=0.03, P=0.707) nor CD4 count (R=-0.04, P=0.568). Conclusion: We conclude that plasma sCD14 and IP-10 were elevated in the HIV-infected patients compared to HIV-uninfected individuals possibly due to on-going immune activation. In addition, plasma high concentrations of IP-10 but not sCD14 concentrations are associated with high VL and low CD4 count.
Collapse
Affiliation(s)
- Kudakwashe Mhandire
- Department of Chemical Pathology, University of Zimbabwe, Harare, Zimbabwe.,Letten Foundation Research House, Harare, Zimbabwe
| | - Tommy Mlambo
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | | | - Kerina Duri
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - Kudzaishe Mateveke
- Research Support Centre, University of Zimbabwe, College of Health Sciences, Harare, Zimbabwe
| | | | - Doreen Zvipo Mhandire
- Department of Chemical Pathology, University of Zimbabwe, Harare, Zimbabwe.,Letten Foundation Research House, Harare, Zimbabwe
| | - Cuthbert Musarurwa
- Department of Chemical Pathology, University of Zimbabwe, Harare, Zimbabwe
| | - Petronella Taonga Wekare
- Medical Laboratory Sciences, University of Zimbabwe, College of Health Sciences, Harare, Zimbabwe
| | | | | | - Babill Stray-Pedersen
- Letten Foundation Research House, Harare, Zimbabwe.,Institute of Clinical Medicine, University of Oslo and Womens' Clinic, Rikshospitalet, University Hospital, Oslo, Norway
| |
Collapse
|