1
|
Verhezen T, Wouters A, Smits E, De Waele J. Powering immunity: mitochondrial dynamics in natural killer cells. Trends Mol Med 2025:S1471-4914(25)00106-6. [PMID: 40393875 DOI: 10.1016/j.molmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for eliminating malignant and infected cells, and have significant therapeutic potential against cancer and viral infections. However, their functionality is often impaired under pathological conditions. Emerging evidence identifies mitochondria as key regulators of NK cell metabolism, fitness, and fate. This review examines how mitochondrial dysfunction impacts on NK cell activity in cancer, viral infections, and inflammatory disorders. We discuss strategies to target mitochondrial architecture, dynamics, and function as potential therapies to restore NK cell fitness. Finally, we highlight unanswered questions and future directions to better understand mitochondrial regulation in NK cells and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
2
|
Wang Q, Yin X, Huang X, Zhang L, Lu H. Impact of mitochondrial dysfunction on the antitumor effects of immune cells. Front Immunol 2024; 15:1428596. [PMID: 39464876 PMCID: PMC11502362 DOI: 10.3389/fimmu.2024.1428596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Huang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Jacques C, Marchand F, Chatelais M, Floris I. Actives from the Micro-Immunotherapy Medicine 2LMIREG ® Reduce the Expression of Cytokines and Immune-Related Markers Including Interleukin-2 and HLA-II While Modulating Oxidative Stress and Mitochondrial Function. J Inflamm Res 2024; 17:1161-1181. [PMID: 38406323 PMCID: PMC10894519 DOI: 10.2147/jir.s445053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Micro-immunotherapy (MI) is a therapeutic option employing low doses (LD) and ultra-low doses (ULD) of cytokines and immune factors to help the organism at modulating the immune responses. In an overpowering inflammatory context, this strategy may support the restoration of the body's homeostasis, as the active ingredients of MI medicines' (MIM) could boost or slow down the physiological functions of the immune cells. The aim of the study is to evaluate for the first time the in vitro anti-inflammatory properties of some actives employed by the MIM of interest in several human immune cell models. Methods In the first part of the study, the effects of the actives from the MIM of interest were assessed from a molecular standpoint: the expression of HLA-II, interleukin (IL)-2, and the secretion of several other cytokines were evaluated. In addition, as mitochondrial metabolism is also involved in the inflammatory processes, the second part of the study aimed at assessing the effects of these actives on the mitochondrial reactive oxygen species (ROS) production and on the mitochondrial membrane potential. Results We showed that the tested actives decreased the expression of HLA-DR and HLA-DP in IFN-γ-stimulated endothelial cells and in LPS-treated-M1-macrophages. The tested MIM slightly reduced the intracellular expression of IL-2 in CD4+ and CD8+ T-cells isolated from PMA/Iono-stimulated human PBMCs. Additionally, while the secretion of IL-2, IL-10, and IFN-γ was diminished, the treatment increased IL-6, IL-9, and IL-17A, which may correspond to a "Th17-like" secretory pattern. Interestingly, in PMA/Iono-treated PBMCs, we reported that the treatment reduced the ROS production in B-cells. Finally, in PMA/Iono-treated human macrophages, we showed that the treatment slightly protected the cells from early cell death/apoptosis. Discussion Overall, these results provide data about the molecular and functional anti-inflammatory effects of several actives contained in the tested MIM in immune-related cells, and their impact on two mitochondria-related processes.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| | | | | | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| |
Collapse
|
5
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
6
|
Zaiatz Bittencourt V, Jones F, Tosetto M, Doherty GA, Ryan EJ. Dysregulation of Metabolic Pathways in Circulating Natural Killer Cells Isolated from Inflammatory Bowel Disease Patients. J Crohns Colitis 2021; 15:1316-1325. [PMID: 33460436 PMCID: PMC8328302 DOI: 10.1093/ecco-jcc/jjab014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBD], comprising Crohn's disease [CD] and ulcerative colitis [UC], are chronic conditions characterized by severe dysregulation of innate and adaptive immunity resulting in the destruction of the intestinal mucosa. Natural killer [NK] cells play a pivotal role in the dynamic interaction between the innate and adaptive immune response. There is an increasing appreciation for the key role immunometabolism plays in the regulation of NK cell function, yet little remains known about the metabolic profile, cytokine secretion, and killing capacity of human NK cells during active IBD. METHODS Peripheral blood mononuclear cells were isolated from peripheral blood of patients with moderate to severely active IBD and healthy controls. NK cells were stained with a combination of cell surface receptors, intracellular cytokines, and proteins and analyzed by flow cytometry. For measurements of NK cell cytotoxicity, the calcein-AM release assay was performed. The metabolic profile was analyzed by an extracellular flux analyzer. RESULTS NK cells from IBD patients produce large quantities of pro-inflammatory cytokines, IL-17A and TNF-α ex vivo, but have limited killing capability. Furthermore, patient NK cells have reduced mitochondrial mass and oxidative phosphorylation. mTORC1, an important cell and metabolic regulator, demonstrated limited activity in both freshly isolated cells and cytokine-stimulated cells. CONCLUSIONS Our results demonstrate that circulating NK cells of IBD patients have an unbalanced metabolic profile, with faulty mitochondria and reduced capacity to kill. These aberrations in NK cell metabolism may contribute to defective killing and thus the secondary infections and increased risk of cancer observed in IBD patients.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
PGC1s and Beyond: Disentangling the Complex Regulation of Mitochondrial and Cellular Metabolism. Int J Mol Sci 2021; 22:ijms22136913. [PMID: 34199142 PMCID: PMC8268830 DOI: 10.3390/ijms22136913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism is the central engine of living organisms as it provides energy and building blocks for many essential components of each cell, which are required for specific functions in different tissues. Mitochondria are the main site for energy production in living organisms and they also provide intermediate metabolites required for the synthesis of other biologically relevant molecules. Such cellular processes are finely tuned at different levels, including allosteric regulation, posttranslational modifications, and transcription of genes encoding key proteins in metabolic pathways. Peroxisome proliferator activated receptor γ coactivator 1 (PGC1) proteins are transcriptional coactivators involved in the regulation of many cellular processes, mostly ascribable to metabolic pathways. Here, we will discuss some aspects of the cellular processes regulated by PGC1s, bringing up some examples of their role in mitochondrial and cellular metabolism, and how metabolic regulation in mitochondria by members of the PGC1 family affects the immune system. We will analyze how PGC1 proteins are regulated at the transcriptional and posttranslational level and will also examine other regulators of mitochondrial metabolism and the related cellular functions, considering approaches to identify novel mitochondrial regulators and their role in physiology and disease. Finally, we will analyze possible therapeutical perspectives currently under assessment that are applicable to different disease states.
Collapse
|
8
|
Traba J, Sack MN, Waldmann TA, Anton OM. Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance. Front Immunol 2021; 12:657293. [PMID: 34079545 PMCID: PMC8166297 DOI: 10.3389/fimmu.2021.657293] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Constitutive activity of the immune surveillance system detects and kills cancerous cells, although many cancers have developed strategies to avoid detection and to resist their destruction. Cancer immunotherapy entails the manipulation of components of the endogenous immune system as targeted approaches to control and destroy cancer cells. Since one of the major limitations for the antitumor activity of immune cells is the immunosuppressive tumor microenvironment (TME), boosting the immune system to overcome the inhibition provided by the TME is a critical component of oncotherapeutics. In this article, we discuss the main effects of the TME on the metabolism and function of immune cells, and review emerging strategies to potentiate immune cell metabolism to promote antitumor effects either as monotherapeutics or in combination with conventional chemotherapy to optimize cancer management.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Michael N. Sack
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Olga M. Anton
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Tham YY, Choo QC, Muhammad TST, Chew CH. Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages. Mol Biol Rep 2020; 47:9595-9607. [PMID: 33259010 DOI: 10.1007/s11033-020-06019-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.
Collapse
Affiliation(s)
- Yong Yao Tham
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Quok Cheong Choo
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | | | - Choy Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| |
Collapse
|
10
|
Chai W, Wang X, Wang W, Wang H, Mou W, Gui J. Decreased glycolysis induced dysfunction of NK cells in Henoch-Schonlein purpura patients. BMC Immunol 2020; 21:53. [PMID: 33036556 PMCID: PMC7547466 DOI: 10.1186/s12865-020-00382-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Henoch-Schonlein purpura (HSP) is the most common systemic vasculitis of the childhood. However, its mechanisms and pathogenesis still need more exploration. Natural killer (NK) cells are innate lymphocytes, and there is a growing appreciation that cellular metabolism is important in determining the immune responsiveness of lymphocytes. Thus, we aimed to analyze the NK cells phenotype and explore the association between glucose metabolism and NK cells function in HSP patients. RESULTS A total number of 64 HSP patients and 34 healthy children were included. The HSP patients were divided into two groups according to whether accompanied with nephritis or not. NK cells in HSP patients without nephritis showed a reduced frequency in peripheral blood, a down-regulated expression of activating receptors both NKp30 and NKp46, and an attenuated cytotoxic function against tumor cells. In addition, the function impairment of NK cells was shown to exacerbate in HSPN. Our data further revealed an aberrant metabolic reprogramming of NK cells in HSP patients. Upon stimulation with cytokines (IL-15, IL-12 and IL-2), NK cells from healthy controls switched to an elevated glycolysis rate to support their effector function. By contrast, the glycolysis rate of activated NK cells in HSP group was not significantly up-regulated from the resting level possibly owing to the inhibition of mTORC1. CONCLUSIONS Our study found that HSP patients were accompanied with dysfunction of NK cells. We concluded that the dysfunction of NK cells in HSP patients was induced with a decreased glycolysis rate and suggested that metabolic reprogramming of NK cells might be a player in the pathogenesis of HSP.
Collapse
Affiliation(s)
- Wenjia Chai
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hui Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
11
|
Gerbec ZJ, Hashemi E, Nanbakhsh A, Holzhauer S, Yang C, Mei A, Tsaih SW, Lemke A, Flister MJ, Riese MJ, Thakar MS, Malarkannan S. Conditional Deletion of PGC-1α Results in Energetic and Functional Defects in NK Cells. iScience 2020; 23:101454. [PMID: 32858341 PMCID: PMC7474003 DOI: 10.1016/j.isci.2020.101454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/30/2019] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
During an immune response, natural killer (NK) cells activate specific metabolic pathways to meet the increased energetic and biosynthetic demands associated with effector functions. Here, we found in vivo activation of NK cells during Listeria monocytogenes infection-augmented transcription of genes encoding mitochondria-associated proteins in a manner dependent on the transcriptional coactivator PGC-1α. Using an Ncr1Cre-based conditional knockout mouse, we found that PGC-1α was crucial for optimal NK cell effector functions and bioenergetics, as the deletion of PGC-1α was associated with decreased cytotoxic potential and cytokine production along with altered ADP/ATP ratios. Lack of PGC-1α also significantly impaired the ability of NK cells to control B16F10 tumor growth in vivo, and subsequent gene expression analysis showed that PGC-1α mediates transcription required to maintain mitochondrial activity within the tumor microenvironment. Together, these data suggest that PGC-1α-dependent transcription of specific target genes is required for optimal NK cell function during the response to infection or tumor growth.
Collapse
Affiliation(s)
- Zachary J. Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J. Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S. Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
13
|
Loftus RM, Assmann N, Kedia-Mehta N, O'Brien KL, Garcia A, Gillespie C, Hukelmann JL, Oefner PJ, Lamond AI, Gardiner CM, Dettmer K, Cantrell DA, Sinclair LV, Finlay DK. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat Commun 2018; 9:2341. [PMID: 29904050 PMCID: PMC6002377 DOI: 10.1038/s41467-018-04719-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/15/2018] [Indexed: 01/18/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.
Collapse
Affiliation(s)
- Róisín M Loftus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Nadine Assmann
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Nidhi Kedia-Mehta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Katie L O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Arianne Garcia
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Conor Gillespie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jens L Hukelmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Scotland, UK.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Scotland, UK
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, 93053, Regensburg, Germany
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Scotland, UK
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053, Regensburg, Germany
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Scotland, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Scotland, UK
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland. .,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
14
|
Miranda D, Jara C, Mejias S, Ahumada V, Cortez-San Martin M, Ibañez J, Hirsch S, Montoya M. Deficient mitochondrial biogenesis in IL-2 activated NK cells correlates with impaired PGC1-α upregulation in elderly humans. Exp Gerontol 2018; 110:73-78. [PMID: 29782967 DOI: 10.1016/j.exger.2018.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Immunosenescence has been described as age-associated changes in the immune function which are thought to be responsible for the increased morbidity with age. Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in immune defense against tumor and microbial diseases. Interestingly, aging-related NK cell dysfunction is associated with features of aging such as tumor incidence, reduced vaccination efficacy, and short survival due to infection. It is known that NK cell effector functions are critically dependent on cytokines and metabolic activity. Our aim was to determine whether there is a difference in purified human NK cell function in response to high concentration of IL-2 between young and elder donors. Here, we report that the stimulation of human NK cells with IL-2 (2000 U/mL) enhance NK cell cytotoxic activity from both young and elderly donors. However, while NK cells from young people responded to IL-2 signaling by increasing mitochondrial mass and mitochondrial membrane potential, no increase in these mitochondrial functional parameters was seen in purified NK cells from elderly subjects. Moreover, as purified NK cells from the young exhibited an almost three-fold increase in PGC-1α expression after IL-2 (2000 U/mL) stimulation, PGC-1α expression was inhibited in purified NK cells from elders. Furthermore, this response upon PGC-1α expression after IL-2 stimulation promoted an increase in ROS production in NK cells from elderly humans, while no increase in ROS production was observed in NK cells of young donors. Our data show that IL-2 stimulates NK cell effector function through a signaling pathway which involves a PGC-1α-dependent mitochondrial function in young NK cells, however it seems that NK cells from older donors exhibit an altered IL-2 signaling which affects mitochondrial function associated with an increased production of ROS which could represent a feature of NK cell senescence.
Collapse
Affiliation(s)
- Dante Miranda
- Immunobiochemistry Laboratory, Departmento de Bioquímica y Biología Molecular, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Claudia Jara
- Cellular Biochemistry Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile
| | - Sophia Mejias
- Cellular Biochemistry Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile
| | - Viviana Ahumada
- Cellular Biochemistry Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile
| | - Marcelo Cortez-San Martin
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile
| | - Jorge Ibañez
- Cellular Biochemistry Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile
| | - Sandra Hirsch
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, PO Box 138-11, Santiago, Chile
| | - Margarita Montoya
- Cellular Biochemistry Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Correo 40, Casilla 33, 9170022 Santiago, Chile.
| |
Collapse
|
15
|
Luo C, Widlund HR, Puigserver P. PGC-1 Coactivators: Shepherding the Mitochondrial Biogenesis of Tumors. Trends Cancer 2018; 2:619-631. [PMID: 28607951 DOI: 10.1016/j.trecan.2016.09.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As coordinators of energy demands and nutritional supplies, the PGC-1 family of transcriptional coactivators regulates mitochondrial biogenesis to control the cellular bioenergetic state. Aside from maintaining normal and adapted cell physiology, recent studies indicate that PGC-1 coactivators also serve important functions in cancer cells. In fact, by balancing mitochondrial energy production with demands for cell proliferation, these factors are involved in almost every step of tumorigenesis. In this review, we discuss the interplay between PGC-1 coactivators and cancer pathogenesis, including tumor initiation, metastatic spread, and response to treatment. Given their involvement in the functional biology of cancers, identification of regulatory targets that influence PGC-1 expression and activity may reveal novel strategies suitable for mono- or combinatorial cancer therapies.
Collapse
Affiliation(s)
- Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston MA 02115, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|