1
|
Turker S, Fumagalli B, Kuhnke P, Hartwigsen G. The 'reading' brain: Meta-analytic insight into functional activation during reading in adults. Neurosci Biobehav Rev 2025; 173:106166. [PMID: 40254114 DOI: 10.1016/j.neubiorev.2025.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Literacy provides the key to social contacts, education, and employment, and significantly influences well-being and mental health. Summarizing 163 studies, the present coordinate-based meta-analysis confirms the importance of classical left-hemispheric language regions and the cerebellum across reading tasks. We found high processing specificity for letter, word, sentence, and text reading exclusively in left-hemispheric areas. Subregions within the left inferior frontal gyrus showed differential engagement for word and pseudoword reading, while subregions within the left temporo-occipital cortex showed differential engagement for words and sentences. The direct comparison of overt and covert reading revealed higher activation likelihood in auditory and motor regions during the first, and more consistent reliance on multiple demand regions during the latter. Last, silent word and pseudoword reading (explicit reading) yielded more consistent activation in left orbito-frontal, cerebellar and temporal cortices when compared to lexical decisions (implicit reading). Lexical decisions, in contrast, showed more consistent bilateral recruitment of inferior frontal and insular regions. The present meta-analysis significantly extends our understanding of the neural architecture underlying reading, corroborates findings from neurostimulation studies and can provide valuable neural insight into reading models.
Collapse
Affiliation(s)
- Sabrina Turker
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Brain and Language Lab, Department for Behavioral and Cognitive Biology, Department of Life Sciences, Vienna University, Austria.
| | - Beatrice Fumagalli
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany
| | - Philipp Kuhnke
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Neumarkt 9-19, 04109, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Neumarkt 9-19, 04109, Germany
| |
Collapse
|
2
|
Zhou Y, Zhai H, Wei H. Acute Effects of Transcranial Direct Current Stimulation Combined with High-Load Resistance Exercises on Repetitive Vertical Jump Performance and EEG Characteristics in Healthy Men. Life (Basel) 2024; 14:1106. [PMID: 39337890 PMCID: PMC11433315 DOI: 10.3390/life14091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive technique known to enhance athletic performance metrics such as vertical jump and lower limb strength. However, it remains unclear whether combining tDCS with the post-activation effects of high-load resistance training can further improve lower limb performance. OBJECTIVE This study investigated the synergistic effects of tDCS and high-load resistance training, using electroencephalography to explore changes in the motor cortex and vertical jump dynamics. METHODS Four experiments were conducted involving 29 participants. Each experiment included tDCS, high-load resistance training, tDCS combined with high-load resistance training, and a control condition. During the tDCS session, participants received 20 min of central stimulation using a Halo Sport 2 headset, while the high-load resistance training session comprised five repetitions of a 90% one-repetition maximum weighted half squat. No intervention was administered in the control group. Electroencephalography tests were conducted before and after each intervention, along with the vertical jump test. RESULTS The combination of tDCS and high-load resistance training significantly increased jump height (p < 0.05) compared to tDCS or high-load resistance training alone. As for electroencephalography power, tDCS combined with high-load resistance training significantly impacted the percentage of α-wave power in the frontal lobe area (F3) of the left hemisphere (F = 6.33, p < 0.05). In the temporal lobe area (T3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 6.33, p < 0.05). For β-wave power, tDCS showed a significant main effect in the frontal pole area (Fp1) of the left hemisphere (F = 17.65, p < 0.01). In the frontal lobe area (F3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 7.53, p < 0.05). The tDCS combined with high-load resistance training intervention also resulted in higher β-wave power in the parietal lobe area (P4) and the temporal lobe area (T4) (p < 0.05). CONCLUSIONS The findings suggest that combining transcranial direct current stimulation (tDCS) and high-load resistance training significantly enhances vertical jump performance compared to either intervention alone. This improvement is associated with changes in the α-wave and β-wave power in specific brain regions, such as the frontal and temporal lobes. Further research is needed to explore the mechanisms and long-term effects of this combined intervention.
Collapse
Affiliation(s)
- Yuping Zhou
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Department of Public Education, Zhejiang College of Construction, Hangzhou 311231, China
| | - Haiting Zhai
- School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
- School of Sports Coaching, Beijing Sport University, Beijing 100084, China
| | - Hongwen Wei
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Reißner B, Grohmann W, Peiseler N, Pinho J, Hußmann K, Werner CJ, Heim S. Quantifier processing and semantic flexibility in patients with aphasia. Front Psychol 2024; 15:1328853. [PMID: 39100551 PMCID: PMC11294751 DOI: 10.3389/fpsyg.2024.1328853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Processing of quantifiers such as "many" and "few" relies on number knowledge, linguistic abilities, and working memory. Negative quantifiers (e.g., "few," "less than half") induce higher processing costs than their positive counterparts. Furthermore, the meaning of some quantifiers is flexible and thus adaptable. Importantly, in neurotypical individuals, changing the meaning of one quantifier also leads to a generalized change in meaning for its polar opposite (e.g., the change of the meaning of "many" leads to the change of that of "few"). Here, we extended this research to patients with fluent and non-fluent aphasia after stroke. In two experiments, participants heard sentences of the type "Many/few of the circles are yellow/blue," each followed by a picture with different quantities of blue and yellow circles. The participants judged whether the sentence adequately described the picture. Each experiment consisted of three blocks: a baseline block to assess the participants' criteria for both quantifiers, a training block to shift the criteria for "many," and a test block, identical to the baseline to capture any changes in quantifier semantics. In Experiment 1, the change of the meaning of "many" was induced by using adaptation to small numbers (20-50%) of circles of the named color. In Experiment 2, explicit feedback was given in the training block after each response to rate proportions of 40% (or higher) as "many," whereas 40% is normally rather rated as "few." The objective was to determine whether people with fluent or non-fluent aphasia were able to process quantifiers appropriately and whether generalized semantic flexibility was present after brain damage. Sixteen out of 21 patients were able to perform the task. People with fluent aphasia showed the expected polarity effect in the reaction times and shifted their criteria for "many" with generalization to the untrained quantifier "few." This effect, however, was only obtained after explicit feedback (Experiment 2) but not by mere adaptation (Experiment 1). In contrast, people with non-fluent aphasia did not change the quantifier semantics in either experiment. This study contributes to gaining new insights into quantifier processing and semantic flexibility in people with aphasia and general underlying processing mechanisms.
Collapse
Affiliation(s)
- Birte Reißner
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wiebke Grohmann
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natalja Peiseler
- Department of Linguistics, Heinrich Heine University, Düsseldorf, Germany
| | - João Pinho
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katja Hußmann
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Cornelius J. Werner
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Johanniter Hospital Stendal, Stendal, Germany
| | - Stefan Heim
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
4
|
Ashaie SA, Hernandez-Pavon JC, Houldin E, Cherney LR. Behavioral, Functional Imaging, and Neurophysiological Outcomes of Transcranial Direct Current Stimulation and Speech-Language Therapy in an Individual with Aphasia. Brain Sci 2024; 14:714. [PMID: 39061454 PMCID: PMC11274865 DOI: 10.3390/brainsci14070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Speech-language therapy (SLT) is the most effective technique to improve language performance in persons with aphasia. However, residual language impairments remain even after intensive SLT. Recent studies suggest that combining transcranial direct current stimulation (tDCS) with SLT may improve language performance in persons with aphasia. However, our understanding of how tDCS and SLT impact brain and behavioral relation in aphasia is poorly understood. We investigated the impact of tDCS and SLT on a behavioral measure of scripted conversation and on functional connectivity assessed with multiple methods, both resting-state functional magnetic resonance imaging (rs-fMRI) and resting-state electroencephalography (rs-EEG). An individual with aphasia received 15 sessions of 20-min cathodal tDCS to the right angular gyrus concurrent with 40 min of SLT. Performance during scripted conversation was measured three times at baseline, twice immediately post-treatment, and at 4- and 8-weeks post-treatment. rs-fMRI was measured pre-and post-3-weeks of treatment. rs-EEG was measured on treatment days 1, 5, 10, and 15. Results show that both communication performance and left hemisphere functional connectivity may improve after concurrent tDCS and SLT. Results are in line with aphasia models of language recovery that posit a beneficial role of left hemisphere perilesional areas in language recovery.
Collapse
Affiliation(s)
- Sameer A. Ashaie
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evan Houldin
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leora R. Cherney
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Meier EL, Sheppard SM, Sebastian R, Berube S, Goldberg EB, Shea J, Stein CM, Hillis AE. Resting state correlates of picture description informativeness in left vs. right hemisphere chronic stroke. Front Neurol 2023; 14:1288801. [PMID: 38145117 PMCID: PMC10744570 DOI: 10.3389/fneur.2023.1288801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Despite a growing emphasis on discourse processing in clinical neuroscience, relatively little is known about the neurobiology of discourse production impairments. Individuals with a history of left or right hemisphere stroke can exhibit difficulty with communicating meaningful discourse content, which implies both cerebral hemispheres play a role in this skill. However, the extent to which successful production of discourse content relies on network connections within domain-specific vs. domain-general networks in either hemisphere is unknown. Methods In this study, 45 individuals with a history of either left or right hemisphere stroke completed resting state fMRI and the Cookie Theft picture description task. Results Participants did not differ in the total number of content units or the percentage of interpretative content units they produced. Stroke survivors with left hemisphere damage produced significantly fewer content units per second than individuals with right hemisphere stroke. Intrinsic connectivity of the left language network was significantly weaker in the left compared to the right hemisphere stroke group for specific connections. Greater efficiency of communication of picture scene content was associated with stronger left but weaker right frontotemporal connectivity of the language network in patients with a history of left hemisphere (but not right hemisphere) stroke. No significant relationships were found between picture description measures and connectivity of the dorsal attention, default mode, or salience networks or with connections between language and other network regions. Discussion These findings add to prior behavioral studies of picture description skills in stroke survivors and provide insight into the role of the language network vs. other intrinsic networks during discourse production.
Collapse
Affiliation(s)
- Erin L. Meier
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Shauna Berube
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer Shea
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Colin M. Stein
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
7
|
Abstract
Noninvasive brain stimulation (NIBS) techniques are widely used tools for the study and rehabilitation of cognitive functions. Different NIBS approaches aim to enhance or impair different cognitive processes. The methodological focus for achieving this has been on stimulation protocols that are considered either inhibitory or facilitatory. However, despite more than three decades of use, their application is based on incomplete and overly simplistic conceptualizations of mechanisms of action. Such misconception limits the usefulness of these approaches in the basic science and clinical domains. In this review, we challenge this view by arguing that stimulation protocols themselves are neither inhibitory nor facilitatory. Instead, we suggest that all induced effects reflect complex interactions of internal and external factors. Given these considerations, we present a novel model in which we conceptualize NIBS effects as an interaction between brain activity and the characteristics of the external stimulus. This interactive model can explain various phenomena in the brain stimulation literature that have been considered unexpected or paradoxical. We argue that these effects no longer seem paradoxical when considered from the viewpoint of state dependency.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
10
|
Tahmi M, Kane VA, Pavol MA, Naqvi IA. Neuroimaging biomarkers of cognitive recovery after ischemic stroke. Front Neurol 2022; 13:923942. [PMID: 36588894 PMCID: PMC9796574 DOI: 10.3389/fneur.2022.923942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Post-stroke cognitive impairment affects more than one-third of patients after an ischemic stroke (IS). Identifying markers of potential cognitive recovery after ischemic stroke can guide patients' selection for treatments, enrollment in clinical trials, and cognitive rehabilitation methods to restore cognitive abilities in post-stroke patients. Despite the burden of post-stroke cognitive impairment, biomarkers of cognitive recovery are an understudied area of research. This narrative review summarizes and critically reviews the current literature on the use and utility of neuroimaging as a predictive biomarker of cognitive recovery after IS. Most studies included in this review utilized structural Magnetic Resonance Imaging (MRI) to predict cognitive recovery after IS; these studies highlighted baseline markers of cerebral small vessel disease and cortical atrophy as predictors of cognitive recovery. Functional Magnetic Resonance Imaging (fMRI) using resting-state functional connectivity and Diffusion Imaging are potential biomarkers of cognitive recovery after IS, although more precise predictive tools are needed. Comparison of these studies is limited by heterogeneity in cognitive assessments. For all modalities, current findings need replication in larger samples. Although no neuroimaging tool is ready for use as a biomarker at this stage, these studies suggest a clinically meaningful role for neuroimaging in predicting post-stroke cognitive recovery.
Collapse
Affiliation(s)
- Mouna Tahmi
- Department of Neurology, State University of New York Downstate Health Sciences University, New York, NY, United States
| | - Veronica A. Kane
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Marykay A. Pavol
- Department of Neurology and Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| | - Imama A. Naqvi
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Columbia University, New York, NY, United States,*Correspondence: Imama A. Naqvi
| |
Collapse
|
11
|
Fleury L, Koch PJ, Wessel MJ, Bonvin C, San Millan D, Constantin C, Vuadens P, Adolphsen J, Cadic Melchior A, Brügger J, Beanato E, Ceroni M, Menoud P, De Leon Rodriguez D, Zufferey V, Meyer NH, Egger P, Harquel S, Popa T, Raffin E, Girard G, Thiran JP, Vaney C, Alvarez V, Turlan JL, Mühl A, Léger B, Morishita T, Micera S, Blanke O, Van De Ville D, Hummel FC. Toward individualized medicine in stroke—The TiMeS project: Protocol of longitudinal, multi-modal, multi-domain study in stroke. Front Neurol 2022; 13:939640. [PMID: 36226086 PMCID: PMC9549862 DOI: 10.3389/fneur.2022.939640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite recent improvements, complete motor recovery occurs in <15% of stroke patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each individual patient. However, there is a lack of knowledge concerning the precise neuronal mechanisms underlying the degree and course of motor recovery and its individual differences, especially in the view of brain network properties despite the fact that it became more and more clear that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at characterizing stroke phenotypes of a large, representative stroke cohort through an extensive, multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic biomarkers allowing to predict the individual degree and course of motor recovery and its underlying neuronal mechanisms paving the way for novel interventions and treatment stratification for the individual patients. A total of up to 100 patients will be assessed at 4 timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three (T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-art systems neuroscience methods including functional, diffusion, and structural magnetic resonance imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an extensive, multi-domain neuropsychological evaluation will be performed at each timepoint, covering all sensorimotor and cognitive domains. This project will significantly add to the understanding of underlying mechanisms of motor recovery with a strong focus on the interactions between the motor and other cognitive domains and multimodal network analyses. The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to predict outcome and promote personalized stratification toward individually tailored treatment concepts using neuro-technologies, thus paving the way toward personalized precision medicine approaches in stroke rehabilitation.
Collapse
Affiliation(s)
- Lisa Fleury
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philipp J. Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Maximilian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University Hospital and Julius-Maximilians-University, Wuerzburg, Germany
| | | | | | | | | | | | - Andéol Cadic Melchior
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Julia Brügger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Martino Ceroni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Diego De Leon Rodriguez
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Valérie Zufferey
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Nathalie H. Meyer
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Campus Biotech, Geneva, Switzerland
| | - Philip Egger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Gabriel Girard
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), EPFL, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), EPFL, Lausanne, Switzerland
| | | | | | | | - Andreas Mühl
- Clinique Romande de Réadaptation, Sion, Switzerland
| | | | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Campus Biotech, Geneva, Switzerland
- Department of Clinical Neurosciences, University of Geneva (UNIGE), Geneva, Switzerland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Medical Image Processing Lab, Center for Neuroprosthetics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Geneva University Hospital, Geneva, Switzerland
- *Correspondence: Friedhelm C. Hummel
| |
Collapse
|
12
|
Turker S, Hartwigsen G. The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Hum Brain Mapp 2022; 43:1157-1173. [PMID: 34716977 PMCID: PMC8764483 DOI: 10.1002/hbm.25700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up-to-date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long-lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the "classical" reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading-related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS-induced improvements in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Alexander von Humboldt FoundationBerlinGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
13
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Guan M, Liu X, Guo L, Zhang R, Tan Q, Wang H, Wang H. Improved Pre-attentive Processing With Occipital rTMS Treatment in Major Depressive Disorder Patients Revealed by MMN. Front Hum Neurosci 2021; 15:648816. [PMID: 34234657 PMCID: PMC8256852 DOI: 10.3389/fnhum.2021.648816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the improvement effect of occipital repetitive transcranial magnetic stimulation (rTMS) combined with escitalopram oxalate tablets on pre-attentive processing in patients with first-episode, medication-naive depression. METHODS Patients who were hospitalized between January and December 2019 were selected. They were randomly allocated to real occipital rTMS stimulation group with 27 cases receiving intermittent theta-burst (iTBS) and sham stimulation group with 24 cases over 20 days. The rTMS treatment target is located at the Oz point of the occipital region. Both groups took escitalopram oxalate tablets, and the average daily drug dose was 15.294 ± 5.041 mg. Hamilton Depression Rating Scale (HAMD) was used to assess the symptoms of depression before and after treatment, and mismatch negativity (MMN) was used to assess the improvement of pre-attentive processing before and after treatment. RESULTS After 20 days of treatment, the total score of HAMD (13.495 ± 3.700) in both groups was significantly lower than that before treatment [21.910 ± 3.841, F(1, 49) = 46, 3.690, p < 0.001]. After treatment, the latency of MMN in the real stimulation group (182.204 ± 31.878 ms) was significantly lower than that in the sham stimulation group (219.896 ± 42.634 ms, p < 0.001), and the amplitude of MMN in the real stimulation group (-7.107 ± 3.374 ms) was significantly higher than that in the sham stimulation group (-2.773 ± 3.7 32 ms, p < 0.001). CONCLUSION Occipital rTMS treatment can enhance the early therapeutic effect and effectively improve the pre-attentive processing of patients with depression and provide a scientific basis for the new target of rTMS therapy in clinical patients with depression.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Mental Health, Xi’an Medical University, Xi’an, China
| | - Xufeng Liu
- School of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Li Guo
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ruiguo Zhang
- Department of Psychiatry, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Huaihai Wang
- Department of Psychiatry, Xi’an Union Hospital, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Turker S, Hartwigsen G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 2021; 141:497-521. [PMID: 34166905 DOI: 10.1016/j.cortex.2021.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Non-invasive brain stimulation (NIBS) has gained increasing popularity as a modulatory tool for drawing causal inferences and exploring task-specific network interactions. Yet, a comprehensive synthesis of reading-related NIBS studies is still missing. We fill this gap by synthesizing the results of 78 NIBS studies investigating the causal involvement of brain regions for reading processing, and then link these results to a neurobiological model of reading. The included studies provide evidence for a functional-anatomical double dissociation for phonology versus semantics during reading-related processes within left inferior frontal and parietal areas. Additionally, the posterior parietal cortex and the anterior temporal lobe are identified as critical regions for reading-related processes. Overall, the findings provide some evidence for a dual-stream neurobiological model of reading, in which a dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, and a ventral stream (left occipito-temporal and inferior frontal areas, with assistance from the angular gyrus and the anterior temporal lobe) processes known words. However, individual differences in reading abilities and strategies, as well as differences in stimulation parameters, may impact the neuromodulatory effects induced by NIBS. We emphasize the need to investigate task-specific network interactions in future studies by combining NIBS with neuroimaging.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Quiñones I, Amoruso L, Pomposo Gastelu IC, Gil-Robles S, Carreiras M. What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers (Basel) 2021; 13:2593. [PMID: 34070619 PMCID: PMC8198785 DOI: 10.3390/cancers13112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that the presence of brain tumors (e.g., low-grade gliomas) triggers language reorganization. Neuroplasticity mechanisms called into play can transfer linguistic functions from damaged to healthy areas unaffected by the tumor. This phenomenon has been reported in monolingual patients, but much less is known about the neuroplasticity of language in the bilingual brain. A central question is whether processing a first or second language involves the same or different cortical territories and whether damage results in diverse recovery patterns depending on the language involved. This question becomes critical for preserving language areas in bilingual brain-tumor patients to prevent involuntary pathological symptoms following resection. While most studies have focused on intraoperative mapping, here, we go further, reporting clinical cases for five bilingual patients tested before and after tumor resection, using a novel multimethod approach merging neuroimaging information from fMRI and MEG to map the longitudinal reshaping of the language system. Here, we present four main findings. First, all patients preserved linguistic function in both languages after surgery, suggesting that the surgical intervention with intraoperative language mapping was successful in preserving cortical and subcortical structures necessary for brain plasticity at the functional level. Second, we found reorganization of the language network after tumor resection in both languages, mainly reflected by a shift of activity to right hemisphere nodes and the recruitment of ipsilesional left nodes. Third, we found that this reorganization varied according to the language involved, indicating that L1 and L2 follow different reshaping patterns after surgery. Fourth, oscillatory longitudinal effects were correlated with BOLD laterality changes in superior parietal and middle frontal areas. These findings may reflect that neuroplasticity impacts on the compensatory involvement of executive control regions, supporting the allocation of cognitive resources as a consequence of increased attentional demands. Furthermore, these results hint at the complementary role of this neuroimaging approach in language mapping, with fMRI offering excellent spatial localization and MEG providing optimal spectrotemporal resolution.
Collapse
Affiliation(s)
- Ileana Quiñones
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
| | - Lucia Amoruso
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | | | - Santiago Gil-Robles
- BioCruces Research Institute, 48015 Bilbao, Spain;
- Department of Neurosurgery, Hospital Quironsalud, 28223 Madrid, Spain
| | - Manuel Carreiras
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Basque Language and Communication, University of the Basque Country, UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
17
|
DUAL-tDCS Treatment over the Temporo-Parietal Cortex Enhances Writing Skills: First Evidence from Chronic Post-Stroke Aphasia. Life (Basel) 2021; 11:life11040343. [PMID: 33919714 PMCID: PMC8070712 DOI: 10.3390/life11040343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The learning of writing skills involves the re-engagement of previously established independent procedures. Indeed, the writing deficit an adult may acquire after left hemispheric brain injury is caused by either an impairment to the lexical route, which processes words as a whole, to the sublexical procedure based on phoneme-to-grapheme conversion rules, or to both procedures. To date, several approaches have been proposed for writing disorders, among which, interventions aimed at restoring the sub-lexical procedure were successful in cases of severe agraphia. In a randomized double-blind crossover design, fourteen chronic Italian post-stroke aphasics underwent dual transcranial direct current stimulation (tDCS) (20 min, 2 mA) with anodal and cathodal current simultaneously placed over the left and right temporo-parietal cortex, respectively. Two different conditions were considered: (1) real, and (2) sham, while performing a writing task. Each experimental condition was performed for ten workdays over two weeks. After real stimulation, a greater amelioration in writing with respect to the sham was found. Relevantly, these effects generalized to different language tasks not directly treated. This evidence suggests, for the first time, that dual tDCS associated with training is efficacious for severe agraphia. Our results confirm the critical role of the temporo-parietal cortex in writing skills.
Collapse
|
18
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
19
|
Ginex V, Gilardone G, Viganò M, Monti A, Judica E, Passaro I, Gilardone M, Vanacore N, Corbo M. Interaction Between Recovery of Motor and Language Abilities After Stroke. Arch Phys Med Rehabil 2020; 101:1367-1376. [PMID: 32417441 DOI: 10.1016/j.apmr.2020.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To analyze the nature of the interaction between motor and language recovery in patients with motor impairment and aphasia following left hemispheric stroke and to investigate prognostic factors of best recovery, that is, the significant recovery of both functions simultaneously. DESIGN Retrospective cohort study. SETTING Specialized inpatient rehabilitation facility. PARTICIPANTS Patients (N=435) with left hemispheric stroke in the postacute phase with motor impairment and aphasia. INTERVENTION Not applicable. MAIN OUTCOME MEASURE Patients who reached the minimal clinically important difference in the motor-FIM (M-FIM) were classified as motor responders, patients who reached a significant change in Aachen Aphasia Test were classified as language responders, and patients who reached a simultaneous and significant improvement in both functions were classified as motor and language responders. RESULTS Of the sample 45% were motor responders, 58% were language responders, and 35% were motor and language responders. Responder groups showed lower motor impairment and less severe aphasia at admission and greater improvement in both functions at discharge compared with nonresponder groups. Premorbid autonomy, dysphagia, apraxia, and number of rehabilitative sessions were also significantly different between groups. A logistic regression model identified M-FIM, repetition abilities, and number of sessions of speech and language therapy as independent predictors of best response (ie, motor and language responders). CONCLUSIONS This study provides evidence about a possible interaction between motor and language recovery after stroke. The improvement in one function was never associated with deterioration in the other. The results actually suggest a synergic effect between the amelioration of the 2 functions, with an overall increased efficiency when the 2 recovery pathways are combined.
Collapse
Affiliation(s)
- Valeria Ginex
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy.
| | - Giulia Gilardone
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Mauro Viganò
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Alessia Monti
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Elda Judica
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Ilaria Passaro
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Marco Gilardone
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Nicola Vanacore
- National Institute of Health, National Centre for Epidemiology, Surveillance, and Health Promotion Italian, Rome, Italy
| | - Massimo Corbo
- Casa Cura Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| |
Collapse
|
20
|
Role of Functional Imaging Techniques to Assess Motor and Language Cortical Plasticity in Glioma Patients: A Systematic Review. Neural Plast 2019; 2019:4056436. [PMID: 31814822 PMCID: PMC6878806 DOI: 10.1155/2019/4056436] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Cerebral plasticity is the ability of the central nervous system to reorganize itself in response to different injuries. The reshaping of functional areas is a crucial mechanism to compensate for damaged function. It is acknowledged that functional remodeling of cortical areas may occur also in glioma patients. Principal limits of previous investigations on cortical plasticity of motor and language functions included scarce reports of longitudinal evaluations and limited sample sizes. This systematic review is aimed at elucidating cortical brain plasticity for motor and language functions, in adult glioma patients, by means of preoperative and intraoperative mapping techniques. We systematically reviewed the literature for prospective studies, assessing cortical plasticity of motor and language functions in low-grade and high-grade gliomas. Eight longitudinal studies investigated cortical plasticity, evaluated by motor and language task-based functional MRI (fMRI), motor navigated transcranial magnetic stimulation (n-TMS), and intraoperative mapping with cortical direct electrocortical stimulation (DES) of language and motor function. Motor function reorganization appeared relatively limited and mostly characterized by intrahemispheric functional changes, including secondary motor cortices. On the other hand, a high level of functional reshaping was found for language function in DES studies. Occurrence of cortical functional reorganization of language function was described focusing on the intrahemispheric recruitment of perilesional areas. However, the association between these functional patterns and recovery of motor and language deficits still remains partially clear. A number of relevant methodological issues possibly affecting the finding generalization emerged, such as the complexity of plasticity outcome measures and the lack of large longitudinal studies. Future studies are required to further confirm these evidences on cortical plasticity in larger samples, combining both functional imaging and intraoperative mapping techniques in longitudinally evaluations.
Collapse
|
21
|
From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behav Neurol 2019; 2019:9894571. [PMID: 31428210 PMCID: PMC6679886 DOI: 10.1155/2019/9894571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Communication in humans activates almost every part of the brain. Of course, the use of language predominates, but other cognitive functions such as attention, memory, emotion, and executive processes are also involved. However, in order to explain how our brain "understands," "speaks," and "writes," and in order to rehabilitate aphasic disorders, neuroscience has faced the challenge for years to reveal the responsible neural networks. Broca and Wernicke (and Lichtheim and many others), during the 19th century, when brain research was mainly observational and autopsy driven, offered fundamental knowledge about the brain and language, so the Wernicke-Geschwind model appeared and aphasiology during the 20th century was based on it. This model is still useful for a first approach into the classical categorization of aphasic syndromes, but it is outdated, because it does not adequately describe the neural networks relevant for language, and it offers a modular perspective, focusing mainly on cortical structures. During the last three decades, neuroscience conquered new imaging, recording, and manipulation techniques for brain research, and a new model of the functional neuroanatomy of language was developed, the dual stream model, consisting of two interacting networks ("streams"), one ventral, bilaterally organized, for language comprehension, and one dorsal, left hemisphere dominant, for production. This new model also has its limitations but helps us to understand, among others, why patients with different brain lesions can have similar language impairments. Furthermore, interesting aspects arise from studying language functions in aging brains (and also in young, developing brains) and in cognitively impaired patients and neuromodulation effects on reorganization of brain networks subserving language. In this selective review, we discuss methods for coupling new knowledge regarding the functional reorganization of the brain with sophisticated techniques capable of activating the available supportive networks in order to provide improved neurorehabilitation strategies for people suffering from neurogenic communication disorders.
Collapse
|
22
|
Short-Term Effects of Anodal Transcranial Direct Current Stimulation on Endurance and Maximal Force Production. A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8040536. [PMID: 31003550 PMCID: PMC6518246 DOI: 10.3390/jcm8040536] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present systematic review and meta-analysis was to explore the effects of transcranial direct current stimulation (tDCS) on endurance (i.e., time to task failure (TTF)) and maximal voluntary contraction (MVC). Furthermore, we aimed to analyze whether the duration of stimulation, the brain region targeted for stimulation, and the task performed could also influence motor performance. We performed a systematic literature review in the databases MEDLINE and Web of Science. The short-term effects of anodal tDCS and sham stimulation (placebo) were considered as experimental and control conditions, respectively. A total of 31 interventions were included (MVC = 13; TTF = 18). Analysis of the strength-related tDCS studies showed small improvements in the MVC (SMD = 0.19; 95% CI = −0.02, 0.41; p = 0.08). However, the results of the endurance-related interventions indicated a moderate effect on TTF performance (SMD = 0.26; 95% CI = 0.07, 0.45; p = 0.008). Furthermore, the sub-analysis showed that anodal tDCS over M1 and stimulation durations longer than 10 min produced the best results in terms of TTF performance enhancement. Additionally, the effects of anodal tDCS were larger during full body exercises (i.e., cycling) when compared to uniarticular tasks. In conclusion, the current meta-analysis indicated that anodal tDCS leads to small and moderate effects on MVC and TTF, respectively.
Collapse
|
23
|
Yi YG, Kim DY, Shim WH, Oh JY, Kim HS, Jung M. Perilesional and homotopic area activation during proverb comprehension after stroke. Brain Behav 2019; 9:e01202. [PMID: 30588768 PMCID: PMC6346665 DOI: 10.1002/brb3.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/22/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The mechanism of functional recovery in right hemisphere (RH) stroke patients when attempting to comprehend a proverb has not been identified. We previously reported that there is bilateral hemisphere involvement during proverb comprehension in the normal population. However, the underlying mechanisms of proverb comprehension following a right middle cerebral artery (MCA) infarction have not yet been fully elucidated. METHODS We here compared the brain regions activated by literal sentences and by opaque or transparent proverbs in right MCA infarction patients using functional magnetic resonance imaging (fMRI). Experimental stimuli included 18 opaque proverbs, 18 transparent proverbs, and 18 literal sentences that were presented pseudorandomly in 1 of 3 predesigned sequences. RESULTS Fifteen normal adults and 17 right MCA infarction patients participated in this study. The areas of the brain in the stroke patients involved in understanding a proverb compared with a literal sentence included the right middle frontal gyrus (MFG) and frontal pole, right anterior cingulate gyrus/paracingulate gyrus and left inferior frontal gyrus (IFG), middle temporal gyrus (MTG), precuneus, and supramarginal gyrus (SMG). When the proverbs were presented to these stroke patients in the comprehension tests, the left supramarginal, postcentral gyrus, and right paracingulate gyrus were activated for the opaque proverbs compared to the transparent proverbs. CONCLUSIONS These findings suggest that the functional recovery of language in stroke patients can be explained by perilesional activation, which is thought to arise from the regulation of the excitatory and inhibitory neurotransmitter system, and by homotopic area activation which has been characterized by decreased transcallosal inhibition and astrocyte involvement.
Collapse
Affiliation(s)
- You Gyoung Yi
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, Seoul, Korea
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Korea
| | - Joo Young Oh
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Korea
| | - Minji Jung
- Department of Rehabilitation Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
24
|
Hartwigsen G. Flexible Redistribution in Cognitive Networks. Trends Cogn Sci 2018; 22:687-698. [DOI: 10.1016/j.tics.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|
25
|
Shuster LI. Considerations for the Use of Neuroimaging Technologies for Predicting Recovery of Speech and Language in Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 27:291-305. [PMID: 29497745 DOI: 10.1044/2018_ajslp-16-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE The number of research articles aimed at identifying neuroimaging biomarkers for predicting recovery from aphasia continues to grow. Although the clinical use of these biomarkers to determine prognosis has been proposed, there has been little discussion of how this would be accomplished. This is an important issue because the best translational science occurs when translation is considered early in the research process. The purpose of this clinical focus article is to present a framework to guide the discussion of how neuroimaging biomarkers for recovery from aphasia could be implemented clinically. METHOD The genomics literature reveals that implementing genetic testing in the real-world poses both opportunities and challenges. There is much similarity between these opportunities and challenges and those related to implementing neuroimaging testing to predict recovery in aphasia. Therefore, the Center for Disease Control's model list of questions aimed at guiding the review of genetic testing has been adapted to guide the discussion of using neuroimaging biomarkers as predictors of recovery in aphasia. CONCLUSION The adapted model list presented here is a first and useful step toward initiating a discussion of how neuroimaging biomarkers of recovery could be employed clinically to provide improved quality of care for individuals with aphasia.
Collapse
Affiliation(s)
- Linda I Shuster
- Department of Speech, Language, and Hearing Sciences, Western Michigan University, Kalamazoo
| |
Collapse
|
26
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
27
|
López-Barroso D, de Diego-Balaguer R. Language Learning Variability within the Dorsal and Ventral Streams as a Cue for Compensatory Mechanisms in Aphasia Recovery. Front Hum Neurosci 2017; 11:476. [PMID: 29021751 PMCID: PMC5623718 DOI: 10.3389/fnhum.2017.00476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Dorsal and ventral pathways connecting perisylvian language areas have been shown to be functionally and anatomically segregated. Whereas the dorsal pathway integrates the sensory-motor information required for verbal repetition, the ventral pathway has classically been associated with semantic processes. The great individual differences characterizing language learning through life partly correlate with brain structure and function within these dorsal and ventral language networks. Variability and plasticity within these networks also underlie inter-individual differences in the recovery of linguistic abilities in aphasia. Despite the division of labor of the dorsal and ventral streams, studies in healthy individuals have shown how the interaction of them and the redundancy in the areas they connect allow for compensatory strategies in functions that are usually segregated. In this mini-review we highlight the need to examine compensatory mechanisms between streams in healthy individuals as a helpful guide to choosing the most appropriate rehabilitation strategies, using spared functions and targeting preserved compensatory networks for brain plasticity.
Collapse
Affiliation(s)
- Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias and Instituto de Investigación Biomédica de Málaga, University of Malaga, Malaga, Spain
- Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|