1
|
Cheng J, Li W, Wang Y, Cao Q, Ni Y, Zhang W, Guo J, Chen B, Zang Y, Zhu Y. Electroacupuncture modulates the intestinal microecology to improve intestinal motility in spinal cord injury rats. Microb Biotechnol 2021; 15:862-873. [PMID: 34797954 PMCID: PMC8913878 DOI: 10.1111/1751-7915.13968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a disease involving gastrointestinal disorders. The underlying mechanisms of the potential protective effects of electroacupuncture (EA) and 5-hydroxytryptamine (5-HT) system on SCI remain unknown. We investigated whether EA improves gut microbial dysbiosis in SCI and regulates the 5-HT system. 16S rDNA gene sequencing was applied to investigate alterations in the gut microbiome of the rats. Faecal metabolites and the expression of the 5-HT system were detected. EA and faecal microbiota transplantation (FMT) treatment facilitated intestinal transmission functional recovery and restored the colon morphology of SCI rats. The composition of the intestinal microbiota, including numbers of phylum Proteobacteria, class Clostridia, order Bacteroidales, and genus Dorea, were amplified in SCI rats, and EA and FMT significantly reshaped the intestinal microbiota. SCI resulted in disturbed metabolic conditions in rats, and the EA and FMT group showed increased amounts of catechin compared with SCI rats. SCI inhibited 5-HT system expression in the colon, which was significantly reversed by EA and FMT treatment. Therefore, EA may ameliorate SCI by modulating microbiota and metabolites and regulate the 5-HT system. Our study provides new insights into the pathogenesis and therapy of SCI from the perspective of microbiota and 5-HT regulation.
Collapse
Affiliation(s)
- Jie Cheng
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weimin Li
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ying Wang
- The Ninth People's Hospital of Wuxi affiliated to Soochow University, Wuxi, China.,Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Qing Cao
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China.,Zigong Forth People's Hospital, Zigong, China
| | - Ying Ni
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyi Zhang
- Zhongshan Rehabilitation Hospital Affiliated to Jiangsu Provincial People's Hospital, Nanjing, China
| | - Jiabao Guo
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Binglin Chen
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Yaning Zang
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yi Zhu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Xu XY, Fang Q, Huang W, Li BC, Zhou XH, Zhou ZY, Li J. Effect of Electroacupuncture on Neurological Deficit and Activity of Clock and Bmal1 in Cerebral Ischemic Rats. Curr Med Sci 2021; 40:1128-1136. [PMID: 33428141 DOI: 10.1007/s11596-020-2295-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Acute focal cerebral ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Acupuncture is an emerging alternative therapy that has been beneficial to acute brain ischemia. However, the underlying protective mechanism of its neuroprotective effect remains unclear. Human original circadian rhythm will be lost after IS, which seriously affects the quality of life and functional recovery of stroke patients. We hypothesize that acupuncture treats IS by regulating the balance of Clock and Bmal1. This study aims to explore the effect of acupuncture at acupoints GV20 and BL23 on neuroprotection and anti-apoptosis in middle cerebral artery occlusion (MCAO) rats and expression of apoptosis and circadian rhythm related proteins. Male Sprague-Dawley (SD) rats were randomly divided into five groups: normal group (Normal), sham model group (Sham MCAO), MCAO model group (MCAO), sham electroacupuncture group (Sham EA) and electroacupuncture group (EA). The MCAO model was prepared by electrocoagulation. The first acupuncture treatment was performed within 2 h after surgery, and then acupuncture therapy was performed on 1st day, 2nd day and 3rd day respectively. After their neurological examination at 72 h of ischemia, the rats from each group were sacrificed. Triphenyltetrazolium chloride (TTC) staining was used to evaluate the brain infarct size. Ultrastructural observation on cerebral ischemic cortex and serum inflammatory cytokines were evaluated. TUNEL staining was used to detect cell apoptosis of brain tissue. The expression levels of proteins Bax, bcl-2, caspase-3, Clock and Bmal1 in the cerebral ischemic region were detected by immunofluorescence staining. Here, we presented evidence that EA at GV20 and BL23 could significantly improve the neurological deficit score and infarct size, and alleviate the cell apoptosis of brain tissue. Moreover, acupuncture treatment upregulated the anti-apoptotic Bcl-2/Bax ratio and reversed the upregulation of caspase-3 following 72-h cerebral ischemia. In addition, the expression levels of circadian proteins Clock and Bmal1 were upregulated in EA group while compared with MCAO group. Our study demonstrated that acupuncture exerted neuroprotective effect against neuronal apoptosis after stroke and the mechanism might be related with regulation of circadian rhythm proteins Clock and Bmal1.
Collapse
Affiliation(s)
- Xin-Yin Xu
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qi Fang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wei Huang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Bo-Cun Li
- Department of Acupuncture, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hong Zhou
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Zhong-Yu Zhou
- Department of Acupuncture & Moxibustion, Hubei Provincial Hospital of Traditional Chinese medicine, Wuhan, 430061, China
| | - Jia Li
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
3
|
Electroacupuncture at Zusanli (ST36) Repairs Interstitial Cells of Cajal and Upregulates c-Kit Expression in Rats with SCI-Induced Neurogenic Bowel Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8896123. [PMID: 33293999 PMCID: PMC7718052 DOI: 10.1155/2020/8896123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background Electroacupuncture (EA) could improve colonic transit activity in rats with neurogenic bowel dysfunction (NBD) caused by spinal cord injury (SCI). The function of interstitial cells of Cajal (ICCs) and c-Kit expression may play essential roles in this process. Material and Methods. Thirty-six Sprague Dawley rats were randomized to the sham group, the SCI group, or the SCI + EA group (bilateral Zusanli, 30 min/day, 14 days). Changes in the ultrastructural morphology of ICCs were observed. The c-Kit expression on different levels was analyzed by immunohistochemistry, Western blotting, and RT-qPCR, respectively. Results Abnormal morphology of ICCs and downregulation of the c-Kit expression occurred after SCI. While the number of ICCs was increased, the ultrastructural morphology was improved significantly in EA rats. They also showed better improvement in c-Kit expression at both protein and gene levels. Conclusion Abnormal ICCs in colon tissues and the downregulated expression of c-Kit could be observed after SCI. EA at Zusanli (ST36) could improve the colon function by repairing the morphology and increasing the number of ICCs and upregulating c-Kit expression.
Collapse
|
4
|
Zhu Y, Cheng J, Yin J, Yang Y, Guo J, Zhang W, Xie B, Lu H, Hao D. Effects of sacral nerve electrical stimulation on 5‑HT and 5‑HT3AR/5‑HT4R levels in the colon and sacral cord of acute spinal cord injury rat models. Mol Med Rep 2020; 22:763-773. [PMID: 32626986 PMCID: PMC7339713 DOI: 10.3892/mmr.2020.11148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to defecation dysfunction. Sacral nerve electrical stimulation (SNS) therapy could improve defecation function. The present study aimed to assess SNS therapy, with regard to the levels of serotonin (5-HT) and its receptors (5-HT3AR and 5-HT4R) in the colon and sacral cord, a rat model of acute severe SCI was used. This rat model was made using the New York University Impactor device. Model rats were randomized to the SCI and SNS (electrical stimulation on the S3 nerve) groups. After 14 days of treatment, enteric transmission function was assessed. 5-HT and 5-HT3AR/5-HT4R were measured by ELISA, quantitative PCR, immunohistochemistry and western blotting. In SCI rats, SNS significantly increased the quantity of feces, shortened the time to the first fecal passage, and improved fecal texture and colon histology. SNS elevated 5-HT contents in the colon and spinal cord, and enhanced 5-HT3AR/5-HT4R protein expression and distribution in the colonic myenteric plexus and mucosa, sacral intermediolateral nucleus and dorsal horn. SNS upregulated the relative expression levels of 5-HT3AR/5-HT4R mRNA and protein in the colon and spinal cord. SNS can improve defecation and accelerate the recovery of colonic transmission functions in rat models of acute SCI. These effects involved upregulation of the 5-HT/5-HT3AR/5-HT4R axes.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jie Cheng
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jichao Yin
- Department of Orthopaedics and Traumatology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710000, P.R. China
| | - Yujie Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Wenyi Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Bing Xie
- Department of Orthopedics and Traumatology, Jiangyin Orthopedics Hospital of Traditional Chinese Medicine, Jiangyin, Jiangsu 214400, P.R. China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
5
|
Zheng Y, He J, Guo L, Yao L, Zheng X, Yang Z, Xia Y, Wu X, Su Y, Xu N, Chen Y. Transcriptome Analysis on Maternal Separation Rats With Depression-Related Manifestations Ameliorated by Electroacupuncture. Front Neurosci 2019; 13:314. [PMID: 31024237 PMCID: PMC6460510 DOI: 10.3389/fnins.2019.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Maternal separation (MS), a stressful event in early life, has been linked to neuropsychiatric disorders later in life, especially depression. In this study we investigated whether treatment with electroacupuncture (EA) could ameliorate depression-related manifestations in adult animals that had adverse early life experiences. We demonstrated depression-like behavior deficiencies in a sucrose preference test and a forced swimming test in a rat model with neonatal MS. Repeated EA treatment at the acupoints Baihui (GV20) and Yintang (GV29) during adulthood was shown to be remarkably attenuated above behavioral deficits. Using unbiased genome-wide RNA sequencing to investigate alterations in the transcriptome of the prefrontal cortex (PFC), we explored the altered gene sets involved in circadian rhythm and neurotransmitter transporter activity in MS rats, and their expression tended to be reversed after EA treatment. In addition, we analyzed the interaction network of differentiated lncRNA- or circRNA-miRNA-mRNA by using the principle of competitive endogenous RNA (ceRNA). These results suggest that EA at GV20 and GV29 ameliorates depression-related manifestations by regulating the expression of multiple genes.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiang He
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Guo
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaorong Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihua Yang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucen Xia
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoli Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Su
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To evaluate and report current evidence regarding the management of bowel dysfunction in spinal cord injury. There is a paucity of high-quality large studies on which to base management advice. RECENT FINDINGS Recent research has focused on defining the nature of symptomatology of bowel dysfunction in SCI and describing the effects on quality of life and social interactions. Technical aspects of colonoscopy have received attention, and aspects of understanding the pathophysiology in relation to both neural and non-neural dysfunction have been studied. There has been refinement and expansion of the pharmacological and non-pharmacological treatment options for bowel dysfunction in SCI. Management of bowel dysfunction in SCI requires a comprehensive and individualized approach, encompassing lifestyle, toileting routine, stimulation, diet, medications, and surgery. Further high-quality research is required to inform best practice.
Collapse
Affiliation(s)
- Zhengyan Qi
- Neurogastroenterology Unit and Department of Gastroenterology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia
- The University of Sydney, Sydney, Australia
| | - James W Middleton
- John Walsh Centre for Rehabilitation Research, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Kolling Institute of Medical Research, Level 12, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Allison Malcolm
- Neurogastroenterology Unit and Department of Gastroenterology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia.
- The University of Sydney, Sydney, Australia.
| |
Collapse
|