1
|
Ahmadi A, Bagheri Ekta M, Sahebkar A. Mechanisms of antidiabetic drugs and cholesterol efflux: A clinical perspective. Drug Discov Today 2022; 27:1679-1688. [PMID: 35182734 DOI: 10.1016/j.drudis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Reverse cholesterol transport (RCT) is a physiological process that reduces excess cholesterol in the body. Cholesterol efflux (CE), an important step in RCT, is mainly mediated by ATP-binding cassette transporters A1 and G1 and has a significant role in atheroprotection. Moreover, impairments in CE can lead to the development of diabetes and fatty liver disease. In this review, we summarize the possible effects of hypoglycemic agents on CE and how this might influence atherosclerosis and dyslipidemia-related pathologies. Newer antidiabetic agents could have significant potential for targeting CE and preventing or alleviating atherosclerosis, obesity, and liver steatosis, and simultaneously improving insulin secretion. However, more research is warranted to interpret the clinical relevance of these data.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russian Federation
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Xiao L, Nie X, Cheng Y, Wang N. Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovasc Drugs Ther 2021; 35:1253-1267. [PMID: 34273091 DOI: 10.1007/s10557-021-07216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are new antidiabetic drugs that reduce hyperglycemia by inhibiting the glucose reabsorption in renal proximal tubules. Clinical studies have shown that SGLT2 inhibitors not only improve glycemic control but also reduce major adverse cardiovascular events (MACE, cardiovascular and total mortality, fatal or nonfatal myocardial infarction or stroke) and hospitalization for heart failure (HF), and improve outcome in chronic kidney disease. These cardiovascular and renal benefits have now been confirmed in both diabetes and non-diabetes patients. The precise mechanism(s) responsible for the protective effects are under intensive investigation. This review examines current evidence on the cardiovascular benefits of SGLT2 inhibitors, with a special emphasis on the vascular actions and their potential mechanisms.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Nie
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Nanping Wang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Cao F, Wu K, Zhu YZ, Bao ZW. Roles and Mechanisms of Dipeptidyl Peptidase 4 Inhibitors in Vascular Aging. Front Endocrinol (Lausanne) 2021; 12:731273. [PMID: 34489872 PMCID: PMC8416540 DOI: 10.3389/fendo.2021.731273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular aging is characterized by alterations in the constitutive properties and biological functions of the blood vessel wall. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are indispensability elements in the inner layer and the medial layer of the blood vessel wall, respectively. Dipeptidyl peptidase-4 (DPP4) inhibitors, as a hypoglycemic agent, play a protective role in reversing vascular aging regardless of their effects in meliorating glycemic control in humans and animal models of type 2 diabetes mellitus (T2DM) through complex cellular mechanisms, including improving EC dysfunction, promoting EC proliferation and migration, alleviating EC senescence, obstructing EC apoptosis, suppressing the proliferation and migration of VSMCs, increasing circulating endothelial progenitor cell (EPC) levels, and preventing the infiltration of mononuclear macrophages. All of these showed that DPP4 inhibitors may exert a positive effect against vascular aging, thereby preventing vascular aging-related diseases. In the current review, we will summarize the cellular mechanism of DPP4 inhibitors regulating vascular aging; moreover, we also intend to compile the roles and the promising therapeutic application of DPP4 inhibitors in vascular aging-related diseases.
Collapse
Affiliation(s)
- Fen Cao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Kun Wu
- Department of Neurology, Huaihua First People’s Hospital, Huaihua, China
| | - Yong-Zhi Zhu
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Zhong-Wu Bao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
- *Correspondence: Zhong-Wu Bao,
| |
Collapse
|
4
|
AGE-RAGE Axis Stimulates Oxidized LDL Uptake into Macrophages through Cyclin-Dependent Kinase 5-CD36 Pathway via Oxidative Stress Generation. Int J Mol Sci 2020; 21:ijms21239263. [PMID: 33291667 PMCID: PMC7730944 DOI: 10.3390/ijms21239263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced glycation end products (AGEs) are localized in macrophage-derived foam cells within atherosclerotic lesions, which could be associated with the increased risk of atherosclerotic cardiovascular disease under diabetic conditions. Although foam cell formation of macrophages has been shown to be enhanced by AGEs, the underlying molecular mechanism remains unclear. Since cyclin-dependent kinase 5 (Cdk5) is reported to modulate inflammatory responses in macrophages, we investigated whether Cdk5 could be involved in AGE-induced CD36 gene expression and foam cell formation of macrophages. AGEs significantly increased Dil-oxidized low-density lipoprotein (ox-LDL) uptake, and Cdk5 and CD36 gene expression in U937 human macrophages, all of which were inhibited by DNA aptamer raised against RAGE (RAGE-aptamer). Cdk5 and CD36 gene expression levels were correlated with each other. An antioxidant, N-acetyl-l-cysteine, mimicked the effects of RAGE-aptamer on AGE-exposed U937 cells. A selective inhibitor of Cdk5, (R)-DRF053, attenuated the AGE-induced Dil-ox-LDL uptake and CD36 gene expression, whereas anti-CD36 antibody inhibited the Dil-ox-LDL uptake but not Cdk5 gene expression. The present study suggests that AGEs may stimulate ox-LDL uptake into macrophages through the Cdk5–CD36 pathway via RAGE-mediated oxidative stress.
Collapse
|
5
|
Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol 2020; 133-134:106779. [PMID: 32814163 DOI: 10.1016/j.vph.2020.106779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a very common macrovascular complication in type 2 diabetes mellitus, and cardiovascular disease is the primary cause of death in diabetes patients. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are a newly identified class of drugs targeting the renal proximal tubules to increase glucose excretion. Large-scale clinical trials have confirmed the cardiovascular protective effects of SGLT inhibitors in patients with diabetes diagnosed with or at a higher risk of atherosclerotic cardiovascular disease. In addition to its direct effect on glycemic control, the function of SGLT-2i in the alleviation of volume load, renal protection, and reduction of inflammation plays an essential role in its therapeutic effect on atherosclerosis. SGLT-2i are known to decrease the levels of inflammatory factors in circulation and in arteries in situ, inhibit foam cell formation and macrophage infiltration, and sustain plaque stability, ultimately blocking the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yingxiu Kang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Fenfen Zhan
- Department of Endocrinology and Metabolism, Sanmen Hospital of Traditional Chinese Medicine, Sanmen, 287 Xinxing Rd, Zhejiang 317100, PR China
| | - Minzhi He
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Xiaoxiao Song
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| |
Collapse
|
6
|
Koshibu M, Mori Y, Saito T, Kushima H, Hiromura M, Terasaki M, Takada M, Fukui T, Hirano T. Antiatherogenic effects of liraglutide in hyperglycemic apolipoprotein E-null mice via AMP-activated protein kinase-independent mechanisms. Am J Physiol Endocrinol Metab 2019; 316:E895-E907. [PMID: 30860874 DOI: 10.1152/ajpendo.00511.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert potent glucose-lowering effects without increasing risks for hypoglycemia and weight gain. Preclinical studies have demonstrated direct antiatherogenic effects of GLP-1RAs in normoglycemic animal models; however, the underlying mechanisms in hyperglycemic conditions have not been fully clarified. Here we aimed to elucidate the role of AMP-activated protein kinase (AMPK) in antiatherogenic effects of GLP-1RAs in hyperglycemic mice. Streptozotocin-induced hyperglycemic apolipoprotein E-null mice were treated with vehicle, low-dose liraglutide (17 nmol·kg-1·day-1), or high-dose liraglutide (107 nmol·kg-1·day-1) in experiment 1 and the AMPK inhibitor dorsomorphin, dorsomorphin + low-dose liraglutide, or dorsomorphin + high-dose liraglutide in experiment 2. Four weeks after treatment, aortas were collected to assess atherosclerosis. In experiment 1, metabolic parameters were similar among the groups. Assessment of atherosclerosis revealed that high-dose liraglutide treatments reduced lipid deposition on the aortic surface and plaque volume and intraplaque macrophage accumulation at the aortic sinus. In experiment 2, liraglutide-induced AMPK phosphorylation in the aorta was abolished by dorsomorphin; however, the antiatherogenic effects of high-dose liraglutide were preserved. In cultured human umbilical vein endothelial cells, liraglutide suppressed tumor necrosis factor-induced expression of proatherogenic molecules; these effects were maintained under small interfering RNA-mediated knockdown of AMPKα1 and in the presence of dorsomorphin. Conversely, in human monocytic U937 cells, the anti-inflammatory effects of liraglutide were abolished by dorsomorphin. In conclusion, liraglutide exerted AMPK-independent antiatherogenic effects in hyperlipidemic mice with streptozotocin-induced hyperglycemia, with the possible involvement of AMPK-independent suppression of proatherogenic molecules in vascular endothelial cells.
Collapse
Affiliation(s)
- Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michiya Takada
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| |
Collapse
|
7
|
Terasaki M, Hiromura M, Mori Y, Kohashi K, Kushima H, Koshibu M, Saito T, Yashima H, Watanabe T, Hirano T. A Dipeptidyl Peptidase-4 Inhibitor Suppresses Macrophage Foam Cell Formation in Diabetic db/db Mice and Type 2 Diabetes Patients. Int J Endocrinol 2018; 2018:8458304. [PMID: 30627161 PMCID: PMC6304851 DOI: 10.1155/2018/8458304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/04/2018] [Indexed: 11/24/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors could have antiatherosclerotic action, in addition to antihyperglycemic roles. Because macrophage foam cells are key components of atherosclerosis, we investigated the effect of the DPP-4 inhibitor teneligliptin on foam cell formation and its related gene expression levels in macrophages extracted from diabetic db/db (C57BLKS/J Iar -+Leprdb/+Leprdb ) mice and type 2 diabetes (T2D) patients ex vivo. We incubated mouse peritoneal macrophages and human monocyte-derived macrophages differentiated by 7-day culture with oxidized low-density lipoprotein in the presence/absence of teneligliptin (10 nmol/L) for 18 hours. We observed remarkable suppression of foam cell formation by teneligliptin treatment ex vivo in macrophages isolated from diabetic db/db mice (32%) and T2D patients (38%); this effect was accompanied by a reduction of CD36 (db/db mice, 43%; T2D patients, 46%) and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression levels (db/db mice, 47%; T2D patients, 45%). Molecular mechanisms underlying this effect are associated with downregulation of CD36 and ACAT-1 by teneligliptin. The suppressive effect of a DPP-4 inhibitor on foam cell formation in T2D is conserved across species and is worth studying to elucidate its potential as an intervention for antiatherogenesis in T2D patients.
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Kyoko Kohashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Masakazu Koshibu
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji City, Tokyo, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Duan L, Rao X, Xia C, Rajagopalan S, Zhong J. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol 2017; 16:76. [PMID: 28619058 PMCID: PMC5472996 DOI: 10.1186/s12933-017-0558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of atherosclerosis has become a worldwide health concern. Although significant progress has been made in the understanding of atherosclerosis pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. There has been increasing clinical and pre-clinical evidence showing DPP4-incretin axis is involved in cardiovascular disease. Although the cardiovascular outcome of DPP4 inhibition or incretin analogues has been or being evaluated by several large scale clinical trials, the exact role of DPP4 in atherosclerotic diseases is not completely understood. In the current review, we will summarize the recent advances in direct and indirect regulatory role of DPP4 in atherosclerosis.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Chang Xia
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
- Department of Microbiology and Immunology, Wuhan Polytechnic University, Wuhan, 430023 Hubei China
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Jixin Zhong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| |
Collapse
|