1
|
Bano B, Kanwal, Hameed S, Lateef M, Wadood A, Shams S, Hussain S, Ain NU, Perveen S, Taha M, Khan KM. Unsymmetrical thiourea derivatives: synthesis and evaluation as promising antioxidant and enzyme inhibitors. Future Med Chem 2024; 16:497-511. [PMID: 38372209 DOI: 10.4155/fmc-2023-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.
Collapse
Affiliation(s)
- Bilquees Bano
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Mehreen Lateef
- Department of Biochemistry, Multi-Disciplinary Research Laboratory, Bahria University Medical & Dental College, Karachi - 74400, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shafqat Hussain
- Department of Chemistry, University of Baltistan, Skardu, Gilgit-Baltistan, 1600, Pakistan
| | - Noor Ui Ain
- Pharmacy Department City University of Science & Information Technology, Peshawar, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi - 75280, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam - 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam - 31441, Saudi Arabia
| |
Collapse
|
2
|
Shalas AF, Winarsih S, Ihsan BRP, Kharismawati A, Firdaus AI, Wiloka E. Molecular docking, synthesis, and antibacterial activity of the analogs of 1-allyl-3-benzoylthiourea. Res Pharm Sci 2023; 18:371-380. [PMID: 37614619 PMCID: PMC10443667 DOI: 10.4103/1735-5362.378084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 05/03/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The incidence of antibiotic resistance rapidly emerges over the globe. In the present study, the synthesis of thiourea derivatives as antibacterial agents and their biological evaluation are reported. Experimental approach Preliminary studies were done by molecular docking of four analogs of 1-allyl-3-benzoylthiourea, clorobiocin, and ciprofloxacin on the DNA gyrase subunit B receptor (PDB: 1KZN). The nucleophilic substitution reaction of benzoyl chloride analogs to the allylthiourea yielded four 1-allyl-3-benzoylthiourea analogs (Cpd 1-4). The reactions were done by a modified Schotten Baumann method. The in vitro antimicrobial activities were determined using the agar dilution method against methicillin-resistant Staphylococcus aureus (MRSA), Salmonella typhi, Escherichia coli, and Pseudomonas aeruginosa. Findings/Results The in-silico study showed that Cpd 1-4 possesses a good interaction on the DNA gyrase subunit B receptor compared to the ciprofloxacin. Cpd 3 had the best binding affinity with a rerank score of - 91.2304. Although the candidate compounds showed unsatisfactory antibacterial activity, they indicated an increasing trend of growth inhibition along with the increment of concentration. Cpd 1 and 4 exhibited in vitro antibacterial activities against MRSA with a minimum inhibitory concentration value of 1000 µg/mL, better compared to the other compounds. Conclusion and implication Despite lacking antibacterial activity, all the synthesized compounds showed an increased trend of growth inhibition along with the increment of concentration. Therefore, additional development should be implemented to the compounds of interest in which optimization of lipophilicity and steric properties are suggested.
Collapse
Affiliation(s)
- Alvan F. Shalas
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Sri Winarsih
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | | | - Aprilia Kharismawati
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Azatil Ismah Firdaus
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Era Wiloka
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| |
Collapse
|
3
|
Ngaini Z, Abd Halim AN, Rasin F, Wan Zullkiplee WSH. Synthesis and structure–activity relationship studies of mono- and bis-thiourea derivatives featuring halogenated azo dyes with antimicrobial properties. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Ainaa Nadiah Abd Halim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Ferlicia Rasin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | |
Collapse
|
4
|
Farooq S, Ngaini Z, Daud AI, Khairul WM. Microwave Assisted Synthesis and Antimicrobial Activities of Carboxylpyrazoline Derivatives: Molecular Docking and DFT Influence in Bioisosteric Replacement. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1937236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Adibah Izzati Daud
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
| | - Wan M. Khairul
- Faculty of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Farooq S, Ngaini Z. Synthesis, Molecular Docking and Antimicrobial Activity of α, β‐Unsaturated Ketone Exchange Moiety for Chalcone and Pyrazoline Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202002278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak Malaysia
| |
Collapse
|
6
|
Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: synthesis, characterization, SAR and kinetic profiling. Mol Divers 2020; 25:1701-1715. [PMID: 32862361 DOI: 10.1007/s11030-020-10136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The work presented in this paper aims toward the synthesis of aryl thiourea derivatives 4a-l of pyrazole based nonsteroidal anti-inflammatory drug named 4-aminophenazone, as potential inhibitors of intestinal alkaline phosphatase enzyme. The screening of synthesized target compounds 4a-l for unraveling the anti-inflammatory potential against calf intestinal alkaline phosphatase gives rise to lead member 4c possessing IC50 value 0.420 ± 0.012 µM, many folds better than reference standard used (KH2PO4 IC50 = 2.8 ± 0.06 µM and L-phenylalanine IC50 = 100 ± 3.1 µM). SAR for unfolding the active site binding pocket interaction along with the mode of enzyme inhibition based on kinetic studies is carried out which showed non-competitive binding mode. The enzyme inhibition studies were further supplemented by molecular dynamic simulations for predicting the protein behavior against active inhibitors 4c and 4g during docking analysis. The preliminary toxicity of the synthesized compounds was determined by using brine shrimp assay. This work also includes detailed biochemical analysis along with RO5 parameters for all the newly synthesized drug derivatives 4a-l.
Collapse
|