1
|
Chang HC, Wu CL, Chiu TM, Liao WC, Gau SY. Risk of osteoarthritis in patients with hidradenitis suppurativa: a global federated health network analysis. Front Immunol 2023; 14:1285560. [PMID: 38173729 PMCID: PMC10763244 DOI: 10.3389/fimmu.2023.1285560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoarthritis and hidradenitis suppurativa (HS) share a common inflammatory pathway. However, whether patients with HS have higher risk developing osteoarthritis remained unclear. METHODS A retrospective cohort design was adopted in this study. Electronic medical records had been retrieved from the US collaborative network in the TriNetX research network. A propensity score matching of 1:1 was performed to match for covariates. In total, 50,931 patients with HS and the same amount of non-HS controls were identified for analyses. Hazard ratio (HR) of osteoarthritis in patient with HS was calculated. RESULTS Risk of patients with HS developing osteoarthritis was 1.37-fold higher than that of non-HS controls [95% confidence interval (CI), 1.21-1.55] when followed up for 1 year. The significance remained when the follow-up periods were extended to 3 years and 5 years. When osteoarthritis was stratified on occurring sites, the HR of knee osteoarthritis was 1.19 (95% CI, 1.09-1.29) and the HR of hip osteoarthritis was 1.17 (95% CI, 1.01-1.35) in the 5-year follow-up. The 5-year risk of osteoarthritis remained significant in sensitivity models. CONCLUSION Patients with HS were of high risk of developing osteoarthritis compared with people without HS. The clinical association was recommended to be considered while approaching patients with HS.
Collapse
Affiliation(s)
- Hui-Chin Chang
- Evidence-based Medicine Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Library, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Lung Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsu-Man Chiu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medical Education, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
2
|
Xiao J, Zhang P, Cai FL, Luo CG, Pu T, Pan XL, Tian M. IL-17 in osteoarthritis: A narrative review. Open Life Sci 2023; 18:20220747. [PMID: 37854319 PMCID: PMC10579884 DOI: 10.1515/biol-2022-0747] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Osteoarthritis (OA) is a painful joint disease that is common among the middle-aged and elderly populations, with an increasing prevalence. Therapeutic options for OA are limited, and the pathogenic mechanism of OA remains unclear. The roles of cytokines and signaling pathways in the development of OA is a current research hot spot. Interleukin (IL)-17 is a pleiotropic inflammatory cytokine produced mainly by T helper 17 cells that has established roles in host defense, tissue repair, lymphoid tissue metabolism, tumor progression, and pathological processes of immune diseases, and studies in recent years have identified an important role for IL-17 in the progression of OA. This narrative review focuses on the mechanisms by which IL-17 contributes to articular cartilage degeneration and synovial inflammation in OA and discusses how IL-17 and the IL-17 signaling pathway affect the pathological process of OA. Additionally, therapeutic targets that have been proposed in recent years based on IL-17 and its pathway in OA are summarized as well as recent advances in the study of IL-17 pathway inhibitors and the potential challenges of their use for OA treatment.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Ping Zhang
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Fang-Lan Cai
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi563000, China
| | - Cheng-Gen Luo
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Tao Pu
- Department of Nephrology and Rheumatology, Moutai Hospital, Renhuai 564500Guizhou, China
| | - Xiao-Li Pan
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Mei Tian
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| |
Collapse
|
3
|
Ren T, Yin N, Du L, Pan M, Ding L. Identification and validation of FPR1, FPR2, IL17RA and TLR7 as immunogenic cell death related genes in osteoarthritis. Sci Rep 2023; 13:16872. [PMID: 37803031 PMCID: PMC10558501 DOI: 10.1038/s41598-023-43440-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Immunogenic cell death (ICDs) has gained increasing attention for its significant clinical efficacy in various diseases. Similarly, more and more attention has been paid in the role of immune factors in the pathological process of osteoarthritis (OA). The objective of this study is to reveal the relationship between ICD-related genes and the process of OA at the gene level through bioinformatics analysis. In this study, Limma R package was applied to identify differentially expressed genes (DEG), and OA related module genes were determined by weighted gene co-expression network analysis. The ICD-related genes were extracted from a previous study. The module genes related to DEGs and ICD were overlapped. Then, hub genes were identified by a series of analyses using the Least absolute shrinkage and selection operator and random forest algorithm, the expression level and diagnostic value of hub genes were evaluated by Logistic regression. In addition, we used Spearman rank correlation analysis to clarify the relationship between hub genes and infiltrating immune cells and immune pathways. The expression levels of FPR1, FPR2, IL17RA, and TLR7 was verified in SD rat knee joint model of OA by immunohistochemistry. The expression levels of FPR1, FPR2, IL17RA, and TLR7 mRNA were detected in the IL-1β induced rat chondrocytes in qPCR experiment in vitro. Four hub genes (FPR1, FPR2, IL17RA, and TLR7) were ultimately identified as OA biomarkers associated with ICD. And knockdown of TLR7 reversed collagen II and ADAMTS-5 degradation in IL-1β-stimulated chondrocytes. This research may provide new immune related biomarkers for the diagnosis of OA and serve as a reference for disease treatment monitoring.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nuo Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Li Du
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China.
| |
Collapse
|
4
|
IL-17 Facilitates VCAM-1 Production and Monocyte Adhesion in Osteoarthritis Synovial Fibroblasts by Suppressing miR-5701 Synthesis. Int J Mol Sci 2022; 23:ijms23126804. [PMID: 35743247 PMCID: PMC9224118 DOI: 10.3390/ijms23126804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the infiltration and adhesion of monocytes into the inflamed joint synovium. Interleukin (IL)-17 is a critical inflammatory mediator that participates in the progression of OA, although the mechanisms linking IL-17 and monocyte infiltration are not well understood. Our analysis of synovial tissue samples retrieved from the Gene Expression Omnibus (GEO) dataset exhibited higher monocyte marker (CD11b) and vascular cell adhesion molecule 1 (VCAM-1) levels in OA samples than in normal, healthy samples. The stimulation of human OA synovial fibroblasts (OASFs) with IL-17 increased VCAM-1 production and subsequently enhanced monocyte adhesion. IL-17 affected VCAM-1-dependent monocyte adhesion by reducing miR-5701 expression through the protein kinase C (PKC)-α and c-Jun N-terminal kinase (JNK) signaling cascades. Our findings improve our understanding about the effect of IL-17 on OA progression and, in particular, VCAM-1 production and monocyte adhesion, which may help with the design of more effective OA treatments.
Collapse
|
5
|
Jia D, Zhang R, He Y, Cai G, Zheng J, Yang Y, Li Y. Comparative effectiveness of two methods for inducing osteoarthritis in a novel animal model, the Diannan small-ear pig. J Orthop Surg Res 2021; 16:594. [PMID: 34649596 PMCID: PMC8515660 DOI: 10.1186/s13018-021-02734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Background Varieties of animals were used to study osteoarthritis pathogenesis. The Diannan small-ear pig, which is native to Yunnan, China, is thought to have an articular anatomy similar to that of humans and is more likely to be a source of pathological tissues than other animals. The aim of this study was to determine whether this animal can serve as a more effective osteoarthritis model and explore the role of SDF-1/CXCR4 signaling pathway in the development of Osteoarthritis in animals. Methods Twenty-seven adult pigs were randomly divided into three groups and underwent the Hulth procedure, papain articular injection, and conventional breeding. After 4, 8, and 12 weeks, cartilage tissues from knee joint were extracted for general and histological observation, immunofluorescence, and biochemical analysis. Synovium was taken out for stromal cell-derived factor-1 analysis. Results Histopathological observation showed obvious cartilage loss in two experimental groups, this cartilage loss was more severe in the chemical groups. Synovial stromal cell-derived factor1 levels increased over time in all groups. mRNA and protein levels of matrix metalloproteinase-3 were much higher in the chemical groups than in the other groups, whereas levels of collagen type II and aggrecan were significantly lower in the chemical groups than in the other groups. Immunofluorescence assays of collagen type II revealed an apparent reduction in this marker in the chemical groups compared with the other groups. Conclusions These results indicated that the Diannan small-ear pig can be used as an effective osteoarthritis model. In addition, it is much more convenient and much faster to induce osteoarthritis by intra-articular injection of papain, which is a method worthy of being promoted.
Collapse
Affiliation(s)
- Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, #295, Road Xichang, District Xishan, Kunming, 650000, Yunan, China
| | - Ruixian Zhang
- Department of Environment-Related Health, Center for Disease Control and Prevention of Yunnan Province, Kunming, 650034, China
| | - Yinghong He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, #295, Road Xichang, District Xishan, Kunming, 650000, Yunan, China
| | - Guofeng Cai
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, #295, Road Xichang, District Xishan, Kunming, 650000, Yunan, China
| | - Jiali Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, #295, Road Xichang, District Xishan, Kunming, 650000, Yunan, China
| | - Yuye Yang
- Department of Reproductive Medicine, Kunming Angel Woman's and Children's Hospital, Kunming, 650000, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, #295, Road Xichang, District Xishan, Kunming, 650000, Yunan, China.
| |
Collapse
|
6
|
Menarim BC, MacLeod JN, Dahlgren LA. Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and tissue repair. World J Stem Cells 2021; 13:825-840. [PMID: 34367479 PMCID: PMC8316866 DOI: 10.4252/wjsc.v13.i7.825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease causing major disability and medical expenditures. Synovitis is a central feature of OA and is primarily driven by macrophages. Synovial macrophages not only drive inflammation but also its resolution, through a coordinated, simultaneous expression of pro- and anti-inflammatory mechanisms that are essential to counteract damage and recover homeostasis. Current OA therapies are largely based on anti-inflammatory principles and therefore block pro-inflammatory mechanisms such as prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such mechanisms are also innately required for mounting a pro-resolving response, and their blockage often results in chronic low-grade inflammation. Following minor injury, macrophages shield the damaged area and drive tissue repair. If the damage is more extensive, macrophages incite inflammation recruiting more macrophages from the bone marrow to maximize tissue repair and ultimately resolve inflammation. However, sustained damage and inflammation often overwhelms pro-resolving mechanisms of synovial macrophages leading to the chronic inflammation and related tissue degeneration observed in OA. Recently, experimental and clinical studies have shown that joint injection with autologous bone marrow mononuclear cells replenishes inflamed joints with macrophage and hematopoietic progenitors, enhancing mechanisms of inflammation resolution, providing remarkable and long-lasting effects. Besides creating an ideal environment for resolution with high concentrations of interleukin-10 and anabolic growth factors, macrophage progenitors also have a direct role in tissue repair. Macrophages constitute a large part of the early granulation tissue, and further transdifferentiate from myeloid into a mesenchymal phenotype. These cells, characterized as fibrocytes, are essential for repairing osteochondral defects. Ongoing “omics” studies focused on identifying key drivers of macrophage-mediated resolution of joint inflammation and those required for efficient osteochondral repair, have the potential to uncover ways for developing engineered macrophages or off-the-shelf pro-resolving therapies that can benefit patients suffering from many types of arthropaties, not only OA.
Collapse
Affiliation(s)
- Bruno C Menarim
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, United States
| |
Collapse
|
7
|
Mimpen JY, Baldwin MJ, Cribbs AP, Philpott M, Carr AJ, Dakin SG, Snelling SJB. Interleukin-17A Causes Osteoarthritis-Like Transcriptional Changes in Human Osteoarthritis-Derived Chondrocytes and Synovial Fibroblasts In Vitro. Front Immunol 2021; 12:676173. [PMID: 34054865 PMCID: PMC8153485 DOI: 10.3389/fimmu.2021.676173] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Increased interleukin (IL)-17A has been identified in joints affected by osteoarthritis (OA), but it is unclear how IL-17A, and its family members IL-17AF and IL-17F, can contribute to human OA pathophysiology. Therefore, we aimed to evaluate the gene expression and signalling pathway activation effects of the different IL-17 family members in chondrocytes and synovial fibroblasts derived from cartilage and synovium of patients with end-stage knee OA. Immunohistochemistry staining confirmed that IL-17 receptor A (IL-17RA) and IL-17RC are expressed in end-stage OA-derived cartilage and synovium. Chondrocytes and synovial fibroblasts derived from end-stage OA patients were treated with IL-17A, IL-17AF, or IL-17F, and gene expression was assessed with bulk RNA-Seq. Hallmark pathway analysis showed that IL-17 cytokines regulated several OA pathophysiology-related pathways including immune-, angiogenesis-, and complement-pathways in both chondrocytes and synovial fibroblasts derived from end-stage OA patients. While overall IL-17A induced the strongest transcriptional response, followed by IL-17AF and IL-17F, not all genes followed this pattern. Disease-Gene Network analysis revealed that IL-17A-related changes in gene expression in these cells are associated with experimental arthritis, knee arthritis, and musculoskeletal disease gene-sets. Western blot analysis confirmed that IL-17A significantly activates p38 and p65 NF-κB. Incubation of chondrocytes and synovial fibroblasts with anti-IL-17A monoclonal antibody secukinumab significantly inhibited IL-17A-induced gene expression. In conclusion, the association of IL-17-induced transcriptional changes with arthritic gene-sets supports a role for IL-17A in OA pathophysiology. Future studies should further investigate the role of IL-17A in the OA joint to establish whether anti-IL-17 treatment could be a potential therapeutic option in OA patients with an inflammatory phenotype.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Mathew J Baldwin
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Adam P Cribbs
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Martin Philpott
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Andrew J Carr
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Stephanie G Dakin
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Sarah J B Snelling
- The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Wei Q, Kong N, Liu X, Tian R, Jiao M, Li Y, Guan H, Wang K, Yang P. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro. J Transl Med 2021; 19:157. [PMID: 33874948 PMCID: PMC8054406 DOI: 10.1186/s12967-021-02823-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qilu Wei
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Kong
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohui Liu
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Run Tian
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming Jiao
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiyang Li
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huanshuai Guan
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Pei Yang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
9
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
10
|
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519:111052. [PMID: 33068640 PMCID: PMC7736189 DOI: 10.1016/j.mce.2020.111052] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA.
| |
Collapse
|
11
|
Menarim BC, Gillis KH, Oliver A, Ngo Y, Werre SR, Barrett SH, Rodgerson DH, Dahlgren LA. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Front Vet Sci 2020; 7:568756. [PMID: 33324696 PMCID: PMC7726135 DOI: 10.3389/fvets.2020.568756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Synovitis is a major component of osteoarthritis and is driven primarily by macrophages. Synovial macrophages are crucial for joint homeostasis (M2-like phenotype), but induce inflammation (M1-like) when regulatory functions become overwhelmed. Macrophage phenotypes in synovium from osteoarthritic and healthy joints are poorly characterized; however, comparative knowledge of their phenotypes during health and disease is paramount for developing targeted treatments. This study compared patterns of macrophage activation in healthy and osteoarthritic equine synovium and correlated histology with cytokine/chemokine profiles in synovial fluid. Synovial histology and immunohistochemistry for M1-like (CD86), M2-like (CD206, IL-10), and pan macrophage (CD14) markers were performed on biopsies from 29 healthy and 26 osteoarthritic equine joints. Synovial fluid cytokines (MCP-1, IL-10, PGE2, IL-1β, IL-6, TNF-α, IL-1ra) and growth factors (GM-CSF, SDF-1α+β, IGF-1, and FGF-2) were quantified. Macrophage phenotypes were not as clearly defined in vivo as they are in vitro. All macrophage markers were expressed with minimal differences between OA and normal joints. Expression for all markers increased proportionate to synovial inflammation, especially CD86. Synovial fluid MCP-1 was higher in osteoarthritic joints while SDF-1 and IL-10 were lower, and PGE2 concentrations did not differ between groups. Increased CD14/CD86/CD206/IL-10 expression was associated with synovial hyperplasia, consistent with macrophage recruitment and activation in response to injury. Lower synovial fluid IL-10 could suggest that homeostatic mechanisms from synovial macrophages became overwhelmed preventing inflammation resolution, resulting in chronic inflammation and OA. Further investigations into mechanisms of arthritis resolution are warranted. Developing pro-resolving therapies may provide superior results in the treatment of OA.
Collapse
Affiliation(s)
- Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kiersten H. Gillis
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Andrea Oliver
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ying Ngo
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | | | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Dina EF, Nashwa RK, Nemr WA. Histologic Evaluations of Xenotransplanted Rabbit Knees by In Vitro-Propagated Human Amniotic Epithelial Cells: A Preclinical Study. EXP CLIN TRANSPLANT 2020; 18:375-381. [PMID: 32281530 DOI: 10.6002/ect.2019.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Human amniotic epithelial cells have multipotent differentiation capacity and are considered as potential therapeutic cells for clinical use. This study represents the first published report on the evaluation of the safety and clinical feasibility of human amniotic epithelial cells for transplant into knee joints, serving as an initial step for subsequent therapeutic evaluations within arthritis clinics. MATERIALS AND METHODS Our experimental design was based on subjecting groups of rabbits as a recipient model for human amniotic epithelial cell transplant into knee joints. Twenty rabbits received 200 μL sterile 0.9% sodium chloride solution containing 1 × 10⁹ human amniotic epithelial cells/knee joint by intra-articular injection. Control groups received cell-free saline into knees, and some animals were not treated. After 10 days of xenotransplant, radiology scans and histologic sections of transplanted and nontrans planted knees were examined and compared. Immunohistochemistry staining was also applied to detect tumor necrosis factor-alpha and interleukin 17 (as inflammatory and immuno-rejection markers) in knee sections. RESULTS Similar to results shown in noninjected and saline-injected knees, all treated knees appeared normal, with no signs of acute immunorejection, no microbial colonization, no pain, no allergic reactions, no inflammation, and normal motion. Use of human amniotic epithelial cells appeared safe without risk of immunorejection or tumor formation in the transplanted knee joint. CONCLUSIONS Human amniotic epithelial cells can be safely transplanted into knee joints, encouraging a need for complementary research for further therapeutic evaluations of human amniotic epithelial cells for curing arthritis.
Collapse
Affiliation(s)
- Elessawi F Dina
- From the Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | | | | |
Collapse
|
13
|
Lu F, Liu P, Zhang Q, Wang W, Guo W. Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: a meta-analysis based on case-control studies. J Orthop Surg Res 2019; 14:445. [PMID: 31842922 PMCID: PMC6916045 DOI: 10.1186/s13018-019-1495-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Knee osteoarthritis is a joint disease which is characterized by degeneration of articular cartilage and subsequent subchondral bone changes. Polymorphisms of IL-17A/F gene were the recognized candidate genes associated with knee osteoarthritis risk although the results were conflicting. The aim of this study was to determine whether IL-17A(rs2275913) and IL-17F(rs763780) polymorphisms confer susceptibility to knee osteoarthritis. Method Literature search was performed in PubMed, Medline, Cochrane Library, Web of science, Embase, and Google Scholar (last search was updated on June 20, 2019), and assessing this association was performed by calculating odds ratios with 95% confidence intervals. Statistical heterogeneity was quantitatively evaluated by using the Q statistic with its p value and I2 statistic. Result Six case-control based studies were included involving IL-17A(rs2275913) (2134 cases and 2306 controls) and IL-17F(rs763780) (2134 cases and 2426 controls). The overall analysis suggested that the A allele of the rs2275913 polymorphism, and the C allele of the rs763780 polymorphism in the IL-17 gene may increase the risk of OA. However, subgroup analysis revealed that no association between IL-17A(rs2275913) gene and knee OA risk was found in Caucasian population. Conclusions This meta-analysis revealed that the IL-17A(rs2275913) gene polymorphisms may increase the risk of knee OA in Asians, and the IL-17F(rs763780) gene polymorphisms may increase the risk of knee OA both in Asians and Caucasians. However, because of the limitations of the present study, additional larger studies are needed to confirm our findings in the future.
Collapse
Affiliation(s)
- Feifan Lu
- China-Japan Friendship School of Clinical Medicine, Peking University, No.2 Yinghua East Street, Beijing, 100029, China
| | - Pei Liu
- Beijing University of Chinese Medicine, Yinghua East Street, Beijing, 100029, China
| | - Qidong Zhang
- Department of Orthopedic Surgery, Beijing Key Lab Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, No.2 Yinghua East Street, Beijing, ,100029, China.
| | - Weiguo Wang
- Department of Orthopedic Surgery, Beijing Key Lab Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, No.2 Yinghua East Street, Beijing, ,100029, China
| | - Wanshou Guo
- Department of Orthopedic Surgery, Beijing Key Lab Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, No.2 Yinghua East Street, Beijing, ,100029, China
| |
Collapse
|
14
|
Liu CX, Gao G, Qin XQ, Deng CQ, Shen XJ. Correlation Analysis of C-terminal telopeptide of collagen type II and Interleukin-1β for Early Diagnosis of Knee Osteoarthritis. Orthop Surg 2019; 12:286-294. [PMID: 31840428 PMCID: PMC7031551 DOI: 10.1111/os.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Objective To analyze the correlation between the Kellgren–Lawrence (K‐L) score of knee osteoarthritis (KOA) patients with different degrees and their urine concentration of C‐terminal telopeptide of collagen type II (CTX‐II) and interleukin‐1β (IL‐1β), and to further evaluate the diagnostic value of CTX‐II and IL‐1β during the pathological process by producing an experimental osteoarthritis (OA) model in rabbits. Methods From 1 January 2017 to 31 December 2018, a total of 34 subjects (7 mild, 9 moderate, 9 severe arthritis patients, and 9 healthy individuals) comprising 16 men and 18 women were included in this study. Patients were diagnosed according to the American College of Rheumatology (ACR) criteria. The urine of all subjects was collected to detect the concentration of CTX‐II and IL‐1β. The rabbits in the KOA group were subjected to protease (control group with saline) injection into the articular cavity of their right knees and immobilization with gypsum. We used radiological and histological examination to identify the KOA model. ELISA was applied to investigate the concentrations of CTX‐II and IL‐1β in urine and serum, and Spearman's rank correlation analysis was used to analyze the correlation. Results There was no significant difference in the mean ages and body mass index (BMI) between groups. The mean ages of mild, moderate, and severe arthritis patients and healthy individuals were 54.29 ± 5.76, 58.44 ± 6.44, 59.89 ± 6.75, and 56.67 ± 4.18 years, respectively. The mean BMI of mild, moderate, and severe arthritis patients and healthy individuals were 23.59 ± 1.56, 23.57 ± 2.06, 24.46 ± 1.64, and 23.42 ± 1.35 kg/m2, respectively. The Kellgren–Lawrence (K‐L) score was higher with the aggravation of KOA. The K‐L scores of mild, moderate, and severe KOA patients were 1.14 ± 0.38, 2.56 ± 0.53, and 3.63 ± 0.52, respectively. The KOA symptoms of patients became more severe, with not only increased K‐L scores but also elevated concentrations of CTX‐II and IL‐1β. Moreover, there was a positive correlation between CTX‐II and IL‐1β of all subjects (r = 0.974, P < 0.001), between K‐L score and urine concentration of CTX‐II (r = 0.900, P < 0.001), and between K‐L score and IL‐1β (r = 0.813, P < 0.001) of all subjects. Both were significantly increased in KOA group rabbits at all time points after surgery. The serum concentration of CTX‐II and IL‐1β was elevated as early as in the 2nd week (3.69 and 4.25 times) and reached a peak (5.41 and 7.23 times) in the 4th week after surgery. Then, until 12 weeks after surgery, the CTX‐II and IL‐1β concentrations in the KOA group were slightly reduced and remained around 4.5 and 6.3 times that in the control group. Moreover, there was a positive correlation between the serum concentration of IL‐1β and CTX‐II (r = 0.967, P < 0.001). Conclusion CTX‐II and IL‐1β, which were significantly increased during the process of KOA, can be used as biomolecular markers to provide guidelines for early diagnosis and treatment of KOA.
Collapse
Affiliation(s)
- Cai-Xia Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Ge Gao
- Faculty of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang-Qing Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiong-Jie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| |
Collapse
|
15
|
Proinflammatory Effects of IL-1β Combined with IL-17A Promoted Cartilage Degradation and Suppressed Genes Associated with Cartilage Matrix Synthesis In Vitro. Molecules 2019; 24:molecules24203682. [PMID: 31614911 PMCID: PMC6833041 DOI: 10.3390/molecules24203682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Combinations of IL-1β and other proinflammatory cytokines reportedly promote the severity of arthritis. We aimed to investigate the effects of IL-1β combined with IL-17A on cartilage degradation and synthesis in in vitro models. Cartilage explant degradation was determined using sulfated glycosaminoglycans (S-GAGs) levels, matrix metalloproteinase (MMP13) gene expression, uronic acid, and collagen contents. Cell morphology and accumulation of proteoglycans were evaluated using hematoxylin-eosin and safranin O staining, respectively. In the pellet culture model, expressions of cartilage-specific anabolic and catabolic genes were evaluated using real-time qRT-PCR. Early induction of MMP13 gene expression was found concomitantly with significant S-GAGs release. During the prolonged period, S-GAGs release was significantly elevated, while MMP-13 enzyme levels were persistently increased together with the reduction of the cartilaginous matrix molecules. The pellet culture showed anabolic gene downregulation, while expression of the proinflammatory cytokines, mediators, and MMP13 genes were elevated. After cytokine removal, these effects were restored to nearly basal levels. This study provides evidence that IL-1β combined with IL-17A promoted chronic inflammatory arthritis by activating the catabolic processes accompanied with the suppression of cartilage anabolism. These suggest that further applications, which suppress inflammatory enhancers, especially IL-17A, should be considered as a target for arthritis research and therapy.
Collapse
|