1
|
He X, Yuan X, Shu Q, Gao Y, Chen Y, Liu Y, Xu J, Zhang Y, Cao G. Therapeutic effects of traditional Chinese medicine Hua-Feng-Dan in a rat model of ischemic stroke involve renormalization of gut microbiota. Front Pharmacol 2025; 16:1485340. [PMID: 39931688 PMCID: PMC11808003 DOI: 10.3389/fphar.2025.1485340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Hua-Feng-Dan is a traditional Chinese medicine used to treat ischemic stroke, but little is known about its therapeutic mechanism. This study explored whether and how the mechanism involves readjustment of gut microbiota. Rats were subjected to middle cerebral artery occlusion as a model of ischemic stroke or to sham surgery, then treated or not with Hua-Feng-Dan. The different groups of animals were compared in terms of neurological score, cerebral infarct volume, brain edema, brain and gut histopathology to assess stroke severity. They were also compared in terms of indices of intestinal barrier permeability, inflammation and oxidative stress, brain metabolites as well as composition of the gut microbiota and their metabolites. Hua-Feng-Dan significantly reduced cerebral infarct volume and brain water content and improved neurological score, ischemic brain histopathology, and gut histopathology. It partially reversed stroke-induced intestinal barrier disruption and leakage, inflammation, dyslipidemia and oxidative stress, as well as the stroke-induced increase in pathogenic gut microbiota (e.g., Escherichia-Shigella, Enterococcus, Clostridium_innocuum_group) and decrease in beneficial microbiota (e.g., Lachnospiraceae, unclassified__f__Lachnospiracea and Ruminococcus_torques_group). The treatment altered levels of 39 and 38 metabolites produced during gut microbial and brain tissue metabolism respectively, mainly of amino acids, nucleosides, short-chain fatty acids, and essential fatty acids. Levels of factors related to inflammation and intestinal barrier permeability correlated positively with relative abundance of Escherichia-Shigella and Clostridium_innocuum_group, and negatively with 4-(glutamylamino) butanoate, 2-hydroxy-3-methylbutyric acid, dihomo-α-linolenic acid, dihomolinoleic acid, and 10-nitrolinoleic acid. Conversely, levels of 4-(glutamylamino) butanoate, 2-hydroxy-3-methylbutyric acid, and 10-nitrolinoleic acid correlated positively with relative abundance of unclassified__f__Lachnospiracea. Our results suggest that Hua-Feng-Dan may mitigate ischemic stroke injury by renormalizing gut microbiota and restoring gut barrier function, gut metabolism, thereby helping to alleviate inflammatory, neurological damage, and brain metabolic disorders.
Collapse
Affiliation(s)
- Xiaoxia He
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaofeng Yuan
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qilin Shu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yayang Gao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Youli Chen
- Zunyi Liao Yuan He Tang Pharmaceutical, Zunyi, China
| | - Yao Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongping Zhang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guoqiong Cao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Yang Y, Li Y, Li R, Wang Z. Research progress on arsenic, arsenic-containing medicinal materials, and arsenic-containing preparations: clinical application, pharmacological effects, and toxicity. Front Pharmacol 2024; 15:1338725. [PMID: 38495096 PMCID: PMC10943982 DOI: 10.3389/fphar.2024.1338725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The toxicity of arsenic is widely recognized globally, mainly harming human health by polluting water, soil, and food. However, its formulations can also be used for the clinical treatment of diseases such as leukemia and tumors. Arsenic has been used as a drug in China for over 2,400 years, with examples such as the arsenic-containing drug realgar mentioned in Shennong's Herbal Classic. We have reviewed references on arsenic over the past thirty years and found that research has mainly focused on clinical, pharmacological, and toxicological aspects. Results and Discussion: The finding showed that in clinical practice, arsenic trioxide is mainly used in combination with all-trans retinoic acid (ATRA) at a dose of 10 mg/d for the treatment of acute promyelocytic leukemia (APL); realgar can be used to treat acute promyelocytic leukemia, myelodysplastic syndrome, and lymphoma. In terms of pharmacology, arsenic mainly exerts anti-tumor effects. The dosage range of the action is 0.01-80 μmol/L, and the concentration of arsenic in most studies does not exceed 20 μmol/L. The pharmacological effects of realgar include antiviral activity, inhibition of overactivated lactate dehydrogenase, and resistance to malaria parasites. In terms of toxicity, arsenic is toxic to multiple systems in a dose-dependent manner. For example, 5 μmol/L sodium arsenite can induce liver oxidative damage and promote the expression of pro-inflammatory factors, and 15 μmol/L sodium arsenite induces myocardial injury; when the concentration is higher, it is more likely to cause toxic damage.
Collapse
Affiliation(s)
- Yichu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiye Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Pharmacology, Toxicology, and Rational Application of Cinnabar, Realgar, and Their Formulations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6369150. [PMID: 36204126 PMCID: PMC9532072 DOI: 10.1155/2022/6369150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Ethnopharmacological Relevance. Mineral medicines are widely used traditional Chinese medicines with curative effects. These medicines are used for many refractory diseases. Aim of the Review. In this review, cinnabar (HgS) and realgar (As₂S₂) serve as examples of mineral medicines, and their pharmacology, therapeutic toxicity, use in traditional medicine mixtures, and research perspectives are discussed. Materials and Methods. A search was performed for the literature on cinnabar and realgar in PubMed, the Chinese Pharmacopeia, Google, and other sources. The search included studies using single herbs, traditional formulations, or novel dosage forms. Results. Cinnabar and cinnabar formulas exhibit good efficacy for sedation, sleep improvement, anxiety alleviation, and brain protection. However, previous studies on neurotransmitters have reached different conclusions, and detailed pharmacological mechanisms are lacking. Realgar and its formulas exert promising antitumor activity through regulation of cell cycle arrest, intrinsic and extrinsic apoptosis, induction of differentiation, autophagy, metabolic reprogramming, matrix metalloproteinase-9 (MMP-9) signaling, and reactive oxygen species (ROS) generation. In addition, realgar can be used to treat a variety of refractory diseases by regulating immunity and exerting antibacterial, antiviral, and other effects. However, the existing pharmacological research on the use of realgar for epidemic prevention is insufficient, and animal experiments and research at the cellular level are lacking. Inappropriate applications of cinnabar and realgar can cause toxicity, including neurotoxicity, liver toxicity, kidney toxicity, and genotoxicity. The toxicological mechanism is complex, and molecular-level research is limited. For clinical applications, theory and clinical experience must be combined to guide scientific and rational drug use and to achieve reduced toxicity and increased efficacy through the use of modern preparation methods or combined drugs. Notably, when cinnabar and realgar are used to treat targeted diseases, these agents have a bidirectional effect of “treatment” and “toxicity” on the central nervous system in pathological and normal states. The pharmacological and toxicological mechanisms need to be elucidated in greater detail in the future. Overall, systematic research is needed to provide a basis for better promotion of the rational use of cinnabar and realgar in the clinic. Conclusion. Mineral medicines are multicomponent, multiactivity, and multitargeted substances. The pharmacology and mechanisms of the toxicity and action of realgar and cinnabar are extremely complex. A number of Chinese medicinal preparations of realgar and cinnabar have demonstrated unique efficacy in the treatment of refractory diseases.
Collapse
|
4
|
Zhou QB, Du Y, Zhang SS, Liu ZT, Ma R, Xu YG. Clinical Response to Traditional Chinese Herbs Containing Realgar (As 2S 2) is Related to DNA Methylation Patterns in Bone Marrow DNA from Patients with Myelodysplastic Syndrome with Multilineage Dysplasia. Cancer Manag Res 2021; 13:55-63. [PMID: 33442294 PMCID: PMC7800455 DOI: 10.2147/cmar.s280886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose DNA methylation is known to play an important role in myelodysplastic syndrome (MDS). We previously showed that Chinese herbs (CHs) containing realgar (As2S2) were effective at treating MDS with multilineage dysplasia (MDS–MLD). We tested whether the response to CH treatment was related to changes in DNA methylation in MDS–MLD. Patients and Methods First, the Illumina methylation 850K array BeadChip assay was used to assess the pretreatment methylation status in bone marrow cells from eight MDS–MLD patients and 3 healthy donors. The eight MDS–MLD patients were then treated with CHs for six months, the arsenic concentration was measured following treatment. The patients were subsequently divided into “effective” and “ineffective” treatment response groups and the DNA methylation patterns of the two groups were compared. Finally, the BeadChip data were validated by pyrosequencing. Results Five of the eight MDS–MLD patients showed hematological improvement (effective-treatment group), while three showed disease progression (ineffective-treatment group) (positive response rate: 62.5%). The arsenic concentrations in the patients ranged from 26.60 to 64.16 μg/L (median 48.4 μg/L) and were not significantly different between the two groups (p = 0.27). Compared with the healthy controls, three genes were hypomethylated and 110 were hypermethylated in the ineffective-treatment group. However, in the group showing hematological improvement, 102 genes were markedly hypomethylated and 87 hypermethylated. The effective-treatment group had a higher proportion of hypomethylated sites than the ineffective-treatment group (53.9% vs 2.6%, respectively; chi-square test) (p < 0.0001). Two hypermethylated and two hypomethylated genes were selected for validation by pyrosequencing (all p < 0.05). Conclusion MDS–MLD patients may present different DNA methylation subtypes. CHs containing realgar may be effective for treating MDS–MLD patients with the hypomethylation subtype.
Collapse
Affiliation(s)
- Qing-Bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| | - Yu Du
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| | - Shan-Shan Zhang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| | - Zheng-Tang Liu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| | - Rou Ma
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| | - Yong-Gang Xu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China
| |
Collapse
|