1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Wang J, Xu WH, Wei Y, Zhu Y, Qin XJ, Zhang HL, Ye DW. Elevated MRE11 expression associated with progression and poor outcome in prostate cancer. J Cancer 2019; 10:4333-4340. [PMID: 31413753 PMCID: PMC6691708 DOI: 10.7150/jca.31454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: Growing evidence has proved that MRE11, a protein underpinned to be involved in DNA double-strand break (DSB) repair process, is correlated with cancer outcomes. However, its role in prostate cancer (PCa) remains unclear. This study aimed to investigate the expression of MRE11 in tumor tissue and defining its value in predicting prognosis of PCa patients. Methods: A total of 578 patients from two cohorts were enrolled in this study. Distribution of categorical clinical-pathological data together with levels of MRE11 expression was compared with χ2-test in a contingency table. Immunohistochemical (IHC) staining and evaluation was detected from 78 paired PCa and adjacent normal tissues. Partial likelihood test from univariate and multivariate Cox regression analysis was developed to address the influence of independent factors on disease-free survival (DFS) and overall survival (OS) in two cohorts. The Kaplan-Meier method and log-rank test were performed to assess the survival benefits between discrete levels. Set Enrichment Analysis (GSEA) was performed to select related genes and pathways from The Cancer Genome Atlas (TCGA) database. Results: In the current study, we demonstrated that MRE11 was highly expressed in PCa compared with normal tissues (P=0.011). In addition, in the TCGA cohort, the median DFS in patients with IHC positive and negative MRE11 expression levels was 24.5 and 30.6 months, and median OS was 28.7 and 33.0 months, respectively. In FUSCC cohort, median DFS in patients with IHC positive and negative MRE11 expression was 28.0 and 35.6 months. Furthermore, survival curves suggested that PCa patients with elevated MRE11 expression levels showed poorer OS (P=0.019) in TCGA cohort and poor DFS (P=0.047) in FUSCC cohort. Conclusion: In conclusion, our study reveals that elevated MRE11 expression is significantly correlated with cancer progression and poor survival in PCa patients. These data suggest that MRE11 may act as an oncoprotein and a promising prognostic marker for PCa patients.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Xiao-Jian Qin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| |
Collapse
|
3
|
Moi SH, Lee YC, Chuang LY, Yuan SSF, Ou-Yang F, Hou MF, Yang CH, Chang HW. Cumulative receiver operating characteristics for analyzing interaction between tissue visfatin and clinicopathologic factors in breast cancer progression. Cancer Cell Int 2018; 18:19. [PMID: 29449787 PMCID: PMC5807850 DOI: 10.1186/s12935-018-0517-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/31/2018] [Indexed: 01/16/2023] Open
Abstract
Background Visfatin has been reported to be associated with breast cancer progression, but the interaction between the visfatin and clinicopathologic factors in breast cancer progression status requires further investigation. To address this problem, it is better to simultaneously consider multiple factors in sensitivity and specificity assays. Methods In this study, a dataset for 105 breast cancer patients (84 disease-free and 21 progressing) were chosen. Individual and cumulative receiver operating characteristics (ROC) were used to analyze the impact of each factor along with interaction effects. Results In individual ROC analysis, only 3 of 13 factors showed better performance for area under curve (AUC), i.e., AUC > 7 for hormone therapy (HT), tissue visfatin, and lymph node (LN) metastasis. Under our proposed scoring system, the cumulative ROC analysis provides higher AUC performance (0.746–0.886) than individual ROC analysis in predicting breast cancer progression. Considering the interaction between these factors, a minimum of six factors, including HT, tissue visfatin, LN metastasis, tumor stage, age, and tumor size, were identified as being highly interactive and associated with breast cancer progression, providing potential and optimal discriminators for predicting breast cancer progression. Conclusion Taken together, the cumulative ROC analysis provides better prediction for breast cancer progression than individual ROC analysis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0517-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sin-Hua Moi
- 1Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,3Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yeh Chuang
- 4Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,6Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,7Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,8Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hong Yang
- 1Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.,9Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,10Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,11Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,12Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|