1
|
Faes A, Calvo Merino E, Branco MP, Van Hoylandt A, Keirse E, Theys T, Ramsey NF, Van Hulle MM. Decoding sign language finger flexions from high-density electrocorticography using graph-optimized block term tensor regression. J Neural Eng 2025; 22:026065. [PMID: 40239679 DOI: 10.1088/1741-2552/adcd9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Objective.A novel method is introduced to regress over the sign language finger movements from human electrocorticography (ECoG) recordings.Approach.The proposed graph-optimized block-term tensor regression (Go-BTTR) method consists of two components: a deflation-based regression model that sequentially Tucker-decomposes multiway ECoG data into a series of blocks, and a causal graph process (CGP) that accounts for the complex relationship between finger movements when expressing sign language gestures. Prior to each regression block, CGP is applied to decide which fingers should be kept separate or grouped and should therefore be referred to BTTR or its extended version eBTTR, respectively.Main results.Two ECoG datasets were used, one recorded in five patients expressing four hand gestures of the American sign language alphabet, and another in two patients expressing all gestures of the Flemish sign language alphabet. As Go-BTTR combines fingers in a flexible way, it can better account for the nonlinear relationship ECoG exhibits when expressing hand gestures, including unintentional finger co-activations. This is reflected by the superior joint finger trajectory predictions compared to eBTTR, and predictions that are on par with BTTR in single-finger scenarios. For the American sign language alphabet (Utrecht dataset), the average correlation across all fingers for all subjects was 0.73 for Go-BTTR, 0.719 for eBTTR and 0.70 for BTTR. For the Flemish sign language alphabet (Leuven dataset), the average correlation across all fingers for all subjects was 0.37 for Go-BTTR, 0.34 for eBTTR and 0.33 for BTTR.Significance.Our findings show that Go-BTTR is capable of decoding complex hand gestures taken from the sign language alphabet. Go-BTTR also demonstrates computational efficiency, providing a notable benefit when intracranial electrodes are inserted during a patient's pre-surgical evaluation. This efficiency helps reduce the time required for developing and testing a brain-computer interface solution.
Collapse
Affiliation(s)
- Axel Faes
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| | - Eva Calvo Merino
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| | - Mariana P Branco
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anaïs Van Hoylandt
- KU Leuven-University of Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, B-3000 Leuven, Belgium
| | - Elina Keirse
- KU Leuven-University of Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, B-3000 Leuven, Belgium
| | - Tom Theys
- KU Leuven-University of Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, B-3000 Leuven, Belgium
| | - Nick F Ramsey
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M M Van Hulle
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Wu X, Metcalfe B, He S, Tan H, Zhang D. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2408-2431. [PMID: 38949928 DOI: 10.1109/tnsre.2024.3421551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Brain-computer interfaces (BCIs) provide a communication interface between the brain and external devices and have the potential to restore communication and control in patients with neurological injury or disease. For the invasive BCIs, most studies recruited participants from hospitals requiring invasive device implantation. Three widely used clinical invasive devices that have the potential for BCIs applications include surface electrodes used in electrocorticography (ECoG) and depth electrodes used in Stereo-electroencephalography (SEEG) and deep brain stimulation (DBS). This review focused on BCIs research using surface (ECoG) and depth electrodes (including SEEG, and DBS electrodes) for movement decoding on human subjects. Unlike previous reviews, the findings presented here are from the perspective of the decoding target or task. In detail, five tasks will be considered, consisting of the kinematic decoding, kinetic decoding,identification of body parts, dexterous hand decoding, and motion intention decoding. The typical studies are surveyed and analyzed. The reviewed literature demonstrated a distributed motor-related network that spanned multiple brain regions. Comparison between surface and depth studies demonstrated that richer information can be obtained using surface electrodes. With regard to the decoding algorithms, deep learning exhibited superior performance using raw signals than traditional machine learning algorithms. Despite the promising achievement made by the open-loop BCIs, closed-loop BCIs with sensory feedback are still in their early stage, and the chronic implantation of both ECoG surface and depth electrodes has not been thoroughly evaluated.
Collapse
|
3
|
Canny E, Vansteensel MJ, van der Salm SMA, Müller-Putz GR, Berezutskaya J. Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome. J Neuroeng Rehabil 2023; 20:157. [PMID: 37980536 PMCID: PMC10656959 DOI: 10.1186/s12984-023-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Individuals with a locked-in state live with severe whole-body paralysis that limits their ability to communicate with family and loved ones. Recent advances in brain-computer interface (BCI) technology have presented a potential alternative for these people to communicate by detecting neural activity associated with attempted hand or speech movements and translating the decoded intended movements to a control signal for a computer. A technique that could potentially enrich the communication capacity of BCIs is functional electrical stimulation (FES) of paralyzed limbs and face to restore body and facial movements of paralyzed individuals, allowing to add body language and facial expression to communication BCI utterances. Here, we review the current state of the art of existing BCI and FES work in people with paralysis of body and face and propose that a combined BCI-FES approach, which has already proved successful in several applications in stroke and spinal cord injury, can provide a novel promising mode of communication for locked-in individuals.
Collapse
Affiliation(s)
- Evan Canny
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
| | - Julia Berezutskaya
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
5
|
Wang DX, Ng N, Seger SE, Ekstrom AD, Kriegel JL, Lega BC. Machine learning classifiers for electrode selection in the design of closed-loop neuromodulation devices for episodic memory improvement. Cereb Cortex 2023; 33:8150-8163. [PMID: 36997155 PMCID: PMC10321120 DOI: 10.1093/cercor/bhad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023] Open
Abstract
Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.
Collapse
Affiliation(s)
- David X Wang
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nicole Ng
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sarah E Seger
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
| | - Arne D Ekstrom
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
- Department of Psychology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer L Kriegel
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bradley C Lega
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
6
|
Bu Y, Harrington DL, Lee RR, Shen Q, Angeles-Quinto A, Ji Z, Hansen H, Hernandez-Lucas J, Baumgartner J, Song T, Nichols S, Baker D, Rao R, Lerman I, Lin T, Tu XM, Huang M. Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning. Cereb Cortex 2023:7161766. [PMID: 37183188 DOI: 10.1093/cercor/bhad173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Advancements in deep learning algorithms over the past decade have led to extensive developments in brain-computer interfaces (BCI). A promising imaging modality for BCI is magnetoencephalography (MEG), which is a non-invasive functional imaging technique. The present study developed a MEG sensor-based BCI neural network to decode Rock-Paper-scissors gestures (MEG-RPSnet). Unique preprocessing pipelines in tandem with convolutional neural network deep-learning models accurately classified gestures. On a single-trial basis, we found an average of 85.56% classification accuracy in 12 subjects. Our MEG-RPSnet model outperformed two state-of-the-art neural network architectures for electroencephalogram-based BCI as well as a traditional machine learning method, and demonstrated equivalent and/or better performance than machine learning methods that have employed invasive, electrocorticography-based BCI using the same task. In addition, MEG-RPSnet classification performance using an intra-subject approach outperformed a model that used a cross-subject approach. Remarkably, we also found that when using only central-parietal-occipital regional sensors or occipitotemporal regional sensors, the deep learning model achieved classification performances that were similar to the whole-brain sensor model. The MEG-RSPnet model also distinguished neuronal features of individual hand gestures with very good accuracy. Altogether, these results show that noninvasive MEG-based BCI applications hold promise for future BCI developments in hand-gesture decoding.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Deborah L Harrington
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Roland R Lee
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Qian Shen
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Annemarie Angeles-Quinto
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengwei Ji
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hayden Hansen
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Jared Baumgartner
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Song
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sharon Nichols
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dewleen Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tuo Lin
- Division of Biostatistics and Bioinformatics, University of California, San Diego, CA 92093, USA
| | - Xin Ming Tu
- Division of Biostatistics and Bioinformatics, University of California, San Diego, CA 92093, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Radiology, Research Services, VA, San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Mintz Hemed N, Melosh NA. An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view. Adv Drug Deliv Rev 2023; 194:114723. [PMID: 36746077 DOI: 10.1016/j.addr.2023.114723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Li J, Qi Y, Pan G. Phase-amplitude coupling-based adaptive filters for neural signal decoding. Front Neurosci 2023; 17:1153568. [PMID: 37205052 PMCID: PMC10185763 DOI: 10.3389/fnins.2023.1153568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Bandpass filters play a core role in ECoG signal processing. Commonly used frequency bands such as alpha, beta, and gamma bands can reflect the normal rhythm of the brain. However, the universally predefined bands might not be optimal for a specific task. Especially the gamma band usually covers a wide frequency span (i.e., 30-200 Hz) which can be too coarse to capture features that appear in narrow bands. An ideal option is to find the optimal frequency bands for specific tasks in real-time and dynamically. To tackle this problem, we propose an adaptive band filter that selects the useful frequency band in a data-driven way. Specifically, we leverage the phase-amplitude coupling (PAC) of the coupled working mechanism of synchronizing neuron and pyramidal neurons in neuronal oscillations, in which the phase of slower oscillations modulates the amplitude of faster ones, to help locate the fine frequency bands from the gamma range, in a task-specific and individual-specific way. Thus, the information can be more precisely extracted from ECoG signals to improve neural decoding performance. Based on this, an end-to-end decoder (PACNet) is proposed to construct a neural decoding application with adaptive filter banks in a uniform framework. Experiments show that PACNet can improve neural decoding performance universally with different tasks.
Collapse
Affiliation(s)
- Jiajun Li
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yu Qi
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh Peoples Hospital, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yu Qi
| | - Gang Pan
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Śliwowski M, Martin M, Souloumiac A, Blanchart P, Aksenova T. Decoding ECoG signal into 3D hand translation using deep learning. J Neural Eng 2022; 19. [PMID: 35287119 DOI: 10.1088/1741-2552/ac5d69] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Objective.Motor brain-computer interfaces (BCIs) are a promising technology that may enable motor-impaired people to interact with their environment. BCIs would potentially compensate for arm and hand function loss, which is the top priority for individuals with tetraplegia. Designing real-time and accurate BCI is crucial to make such devices useful, safe, and easy to use by patients in a real-life environment. Electrocorticography (ECoG)-based BCIs emerge as a good compromise between invasiveness of the recording device and good spatial and temporal resolution of the recorded signal. However, most ECoG signal decoders used to predict continuous hand movements are linear models. These models have a limited representational capacity and may fail to capture the relationship between ECoG signal features and continuous hand movements. Deep learning (DL) models, which are state-of-the-art in many problems, could be a solution to better capture this relationship.Approach.In this study, we tested several DL-based architectures to predict imagined 3D continuous hand translation using time-frequency features extracted from ECoG signals. The dataset used in the analysis is a part of a long-term clinical trial (ClinicalTrials.gov identifier: NCT02550522) and was acquired during a closed-loop experiment with a tetraplegic subject. The proposed architectures include multilayer perceptron, convolutional neural networks (CNNs), and long short-term memory networks (LSTM). The accuracy of the DL-based and multilinear models was compared offline using cosine similarity.Main results.Our results show that CNN-based architectures outperform the current state-of-the-art multilinear model. The best architecture exploited the spatial correlation between neighboring electrodes with CNN and benefited from the sequential character of the desired hand trajectory by using LSTMs. Overall, DL increased the average cosine similarity, compared to the multilinear model, by up to 60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right hand, respectively.Significance.This study shows that DL-based models could increase the accuracy of BCI systems in the case of 3D hand translation prediction in a tetraplegic subject.
Collapse
Affiliation(s)
- Maciej Śliwowski
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France.,Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| | - Matthieu Martin
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France
| | | | | | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, France
| |
Collapse
|
10
|
Pradeepkumar J, Anandakumar M, Kugathasan V, Lalitharatne TD, De Silva AC, Kappel SL. Decoding of Hand Gestures from Electrocorticography with LSTM Based Deep Neural Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:420-423. [PMID: 34891323 DOI: 10.1109/embc46164.2021.9630958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hand gesture decoding is a key component of controlling prosthesis in the area of Brain Computer Interface (BCI). This study is concerned with classification of hand gestures, based on Electrocorticography (ECoG) recordings. Recent studies have utilized the temporal information in ECoG signals for robust hand gesture decoding. In our preliminary analysis on ECoG recordings of hand gestures, we observed different power variations in six frequency bands ranging from 4 to 200 Hz. Therefore, the current trend of including temporal information in the classifier was extended to provide equal importance to power variations in each of these frequency bands. Statistical and Principal Component Analysis (PCA) based feature reduction was implemented for each frequency band separately, and classification was performed with a Long Short-Term Memory (LSTM) based neural network to utilize both temporal and spatial information of each frequency band. The proposed architecture along with each feature reduction method was tested on ECoG recordings of five finger flexions performed by seven subjects from the publicly available 'fingerflex' dataset. An average classification accuracy of 82.4% was achieved with the statistical based channel selection method which is an improvement compared to state-of-the-art methods.
Collapse
|
11
|
Verwoert M, Vansteensel MJ, Freudenburg ZV, Aarnoutse EJ, Leijten FS, Ramsey NF, Branco MP. Decoding four hand gestures with a single bipolar pair of electrocorticography electrodes. J Neural Eng 2021; 18:10.1088/1741-2552/ac2c9f. [PMID: 34607318 PMCID: PMC8744490 DOI: 10.1088/1741-2552/ac2c9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
Objective.Electrocorticography (ECoG) based brain-computer interfaces (BCIs) can be used to restore communication in individuals with locked-in syndrome. In motor-based BCIs, the number of degrees-of-freedom, and thus the speed of the BCI, directly depends on the number of classes that can be discriminated from the neural activity in the sensorimotor cortex. When considering minimally invasive BCI implants, the size of the subdural ECoG implant must be minimized without compromising the number of degrees-of-freedom.Approach.Here we investigated if four hand gestures could be decoded using a single ECoG strip of four consecutive electrodes spaced 1 cm apart and compared the performance between a unipolar and a bipolar montage. For that we collected data of seven individuals with intractable epilepsy implanted with ECoG grids, covering the hand region of the sensorimotor cortex. Based on the implanted grids, we generated virtual ECoG strips and compared the decoding accuracy between (a) a single unipolar electrode (Unipolar Electrode), (b) a combination of four unipolar electrodes (Unipolar Strip), (c) a single bipolar pair (Bipolar Pair) and (d) a combination of six bipolar pairs (Bipolar Strip).Main results.We show that four hand gestures can be equally well decoded using 'Unipolar Strips' (mean 67.4 ± 11.7%), 'Bipolar Strips' (mean 66.6 ± 12.1%) and 'Bipolar Pairs' (mean 67.6 ± 9.4%), while 'Unipolar Electrodes' (61.6 ± 5.9%) performed significantly worse compared to 'Unipolar Strips' and 'Bipolar Pairs'.Significance.We conclude that a single bipolar pair is a potential candidate for minimally invasive motor-based BCIs and encourage the use of ECoG as a robust and reliable BCI platform for multi-class movement decoding.
Collapse
Affiliation(s)
- Maxime Verwoert
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J. Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Zachary V. Freudenburg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J. Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariana P. Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Cao Y, Zhan Y, Du M, Zhao G, Liu Z, Zhou F, He L. Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy. Quant Imaging Med Surg 2021; 11:3418-3430. [PMID: 34341720 DOI: 10.21037/qims-20-874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/08/2021] [Indexed: 02/05/2023]
Abstract
Background Brain functional plasticity and reorganization in patients with cervical spondylotic myelopathy (CSM) is increasingly being explored and validated. However, specific topological alterations in functional networks and their role in CSM brain functional reorganization remain unclear. This study investigates the topological architecture of intrinsic brain functional networks in CSM patients using graph theory. Methods Functional MRI was conducted on 67 CSM patients and 60 healthy controls (HCs). The topological organization of the whole-brain functional network was then calculated using theoretical graph analysis. The difference in categorical variables between groups was compared using a chi-squared test, while that between continuous variables was evaluated using a two-sample t-test. Nonparametric permutation tests were used to compare network measures between the two groups. Results Small-world architecture in functional brain networks were identified in both CSM patients and HCs. Compared with HCs, CSM patients showed a decreased area under the curve (AUC) of the characteristic path length (FDR q=0.040), clustering coefficient (FDR q=0.037), and normalized characteristic path length (FDR q=0.038) of the network. In contrast, there was an increased AUC of normalized clustering coefficient (FDR q=0.014), small-worldness (FDR q=0.009), and global network efficiency (FDR q=0.027) of the network. In local brain regions, nodal topological properties revealed group differences which were predominantly in the default-mode network (DMN), left postcentral gyrus, bilateral putamen, lingual gyrus, and posterior cingulate gyrus. Conclusions This study reported altered functional topological organization in CSM patients. Decreased nodal centralities in the visual cortex and sensory-motor regions may indicate sensory-motor dysfunction and blurred vision. Furthermore, increased nodal centralities in the cerebellum may be compensatory for sensory-motor dysfunction in CSM, while the increased DMN may indicate increased psychological processing in CSM patients.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaru Zhan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Miao Du
- College of Electrical Engineering of Sichuan University, Chengdu, China
| | - Guoshu Zhao
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Zhili Liu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Laichang He
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| |
Collapse
|
13
|
Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding Movement From Electrocorticographic Activity: A Review. Front Neuroinform 2019; 13:74. [PMID: 31849632 PMCID: PMC6901702 DOI: 10.3389/fninf.2019.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions for people suffering from neurological disabilities. This recording technique combines adequate temporal and spatial resolution with the lower risks of medical complications compared to the other invasive methods. ECoG is routinely used in clinical practice for preoperative cortical mapping in epileptic patients. During the last two decades, research utilizing ECoG has considerably grown, including the paradigms where behaviorally relevant information is extracted from ECoG activity with decoding algorithms of different complexity. Several research groups have advanced toward the development of assistive devices driven by brain-computer interfaces (BCIs) that decode motor commands from multichannel ECoG recordings. Here we review the evolution of this field and its recent tendencies, and discuss the potential areas for future development.
Collapse
Affiliation(s)
- Ksenia Volkova
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Mikhail A. Lebedev
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Alexander Kaplan
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
- Center for Biotechnology Development, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Ossadtchi
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| |
Collapse
|
14
|
Gruenwald J, Znobishchev A, Kapeller C, Kamada K, Scharinger J, Guger C. Time-Variant Linear Discriminant Analysis Improves Hand Gesture and Finger Movement Decoding for Invasive Brain-Computer Interfaces. Front Neurosci 2019; 13:901. [PMID: 31616237 PMCID: PMC6775278 DOI: 10.3389/fnins.2019.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/12/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive brain-computer interfaces yield remarkable performance in a multitude of applications. For classification experiments, high-gamma bandpower features and linear discriminant analysis (LDA) are commonly used due to simplicity and robustness. However, LDA is inherently static and not suited to account for transient information that is typically present in high-gamma features. To resolve this issue, we here present an extension of LDA to the time-variant feature space. We call this method time-variant linear discriminant analysis (TVLDA). It intrinsically provides a feature reduction stage, which makes external approaches thereto obsolete, such as feature selection techniques or common spatial patterns (CSPs). As well, we propose a time-domain whitening stage which equalizes the pronounced 1/f-shape of the typical brain-wave spectrum. We evaluated our proposed architecture based on recordings from 15 epilepsy patients with temporarily implanted subdural grids, who participated in additional research experiments besides clinical treatment. The experiments featured two different motor tasks involving three high-level gestures and individual finger movement. We used log-transformed bandpower features from the high-gamma band (50-300 Hz, excluding power-line harmonics) for classification. On average, whitening improved the classification performance by about 11%. On whitened data, TVLDA outperformed LDA with feature selection by 11.8%, LDA with CSPs by 13.9%, and regularized LDA with vectorized features by 16.4%. At the same time, TVLDA only required one or two internal features to achieve this. TVLDA provides stable results even if very few trials are available. It is easy to implement, fully automatic and deterministic. Due to its low complexity, TVLDA is suited for real-time brain-computer interfaces. Training is done in less than a second. TVLDA performed particularly well in experiments with data from high-density electrode arrays. For example, the three high-level gestures were correctly identified at a rate of 99% over all subjects. Similarly, the decoding accuracy of individual fingers was 96% on average over all subjects. To our knowledge, these mean accuracies are the highest ever reported for three-class and five-class motor-control BCIs.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | | | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| |
Collapse
|
15
|
Fischer B, Schander A, Kreiter AK, Lang W, Wegener D. Visual epidural field potentials possess high functional specificity in single trials. J Neurophysiol 2019; 122:1634-1648. [PMID: 31412218 DOI: 10.1152/jn.00510.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks.NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.
Collapse
Affiliation(s)
- Benjamin Fischer
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Andreas Schander
- Institute for Microsensors, -Actuators, and -Systems, University of Bremen, Bremen, Germany
| | - Andreas K Kreiter
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Walter Lang
- Institute for Microsensors, -Actuators, and -Systems, University of Bremen, Bremen, Germany
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
16
|
Pan G, Li JJ, Qi Y, Yu H, Zhu JM, Zheng XX, Wang YM, Zhang SM. Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks. Front Neurosci 2018; 12:555. [PMID: 30210272 PMCID: PMC6119703 DOI: 10.3389/fnins.2018.00555] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022] Open
Abstract
Brain-computer interface (BCI) is a direct communication pathway between brain and external devices, and BCI-based prosthetic devices are promising to provide new rehabilitation options for people with motor disabilities. Electrocorticography (ECoG) signals contain rich information correlated with motor activities, and have great potential in hand gesture decoding. However, most existing decoders use long time windows, thus ignore the temporal dynamics within the period. In this study, we propose to use recurrent neural networks (RNNs) to exploit the temporal information in ECoG signals for robust hand gesture decoding. With RNN's high nonlinearity modeling ability, our method can effectively capture the temporal information in ECoG time series for robust gesture recognition. In the experiments, we decode three hand gestures using ECoG signals of two participants, and achieve an accuracy of 90%. Specially, we investigate the possibility of recognizing the gestures in a time interval as short as possible after motion onsets. Our method rapidly recognizes gestures within 0.5 s after motion onsets with an accuracy of about 80%. Experimental results also indicate that the temporal dynamics is especially informative for effective and rapid decoding of hand gestures.
Collapse
Affiliation(s)
- Gang Pan
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jia-Jun Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yu Qi
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Hang Yu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jun-Ming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiao-Xiang Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yue-Ming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Shao-Min Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| |
Collapse
|