1
|
Esposito G, De Rosa T, Di Matteo V, Ciccarelli C, Ajaoud M, Teta R, Lega M, Costantino V. Bio-tracking, bio-monitoring and bio-magnification interdisciplinary studies to assess cyanobacterial harmful algal blooms (cyanoHABs)' impact in complex coastal systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179480. [PMID: 40267829 DOI: 10.1016/j.scitotenv.2025.179480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Cyanobacterial Harmful Algal Blooms (cyanoHABs) represent significant threats to human health and environmental sustainability. These blooms, characterized by the rapid proliferation of toxic species, can release harmful toxins into aquatic environments, with severe consequences for ecosystems and human populations. Traditional research on cyanoHABs faces several limitations, including the lack of standardized detection methods, environmental variability, and low awareness of the associated risks. Most studies rely on conventional laboratory techniques, which are often resource-intensive and not widely accessible. Additionally, the complex dynamics of cyanoHABs, influenced by factors such as temperature, nutrients, and bloom evolution, make it difficult to establish consistent regulatory and monitoring frameworks. This paper presents a new integrated strategy that combines advanced technologies (remote sensing, in-situ multispectral analysis, mass spectrometry) with bio-monitoring and bio-tracking. This interdisciplinary approach improves the monitoring of cyanoHAB spread, tracks bioaccumulation in the food chain, and provides timely warnings for public health protection. The case study focuses on the Campi Flegrei area, an active volcanic region in Southern Italy, where Lake Avernus, a volcanic lake, has experienced periodic cyanobacterial blooms. This region also hosts mussel aquaculture and recreational activities. Remote sensing allowed the tracking of the 2022 bloom from the lake to the sea, reaching a mussel farm along the coast. Rapid detection and quantification of anabaenopeptins in bivalves enabled timely alerts to local authorities, prompting an assessment of contamination risks. The study demonstrates how the integration of remote sensing and molecular analysis enhances environmental monitoring by providing real-time, high-resolution data. This approach supports a better understanding of bloom dynamics, bioaccumulation, and impacts on the food chain, informing risk management and regulatory strategies. The research highlights the value of combining advanced technologies to improve the management of cyanoHAB-related risks, protecting both human health and ecosystem sustainability.
Collapse
Affiliation(s)
- Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Teresa De Rosa
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Viviana Di Matteo
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Cristiano Ciccarelli
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy.
| | - Mohammed Ajaoud
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy.
| | - Roberta Teta
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Massimiliano Lega
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy.
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| |
Collapse
|
2
|
Meloni D, Mudadu AG, Abete MC, Bazzoni AM, Griglione A, Avolio R, Serra S, Fois N, Esposito G, Melillo R, Squadrone S. Seasonal variability of trace elements bioaccumulation in Pacific Oysters (Crassostrea gigas) from an experimental pilot farm in the Calich Lagoon (Sardinia, Italy). J Trace Elem Med Biol 2024; 85:127487. [PMID: 38908290 DOI: 10.1016/j.jtemb.2024.127487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Metals pollution is a worldwide environmental issue due to their persistence in the ecosystems, non-degradability, and bioaccumulation in marine biota. Pacific Oysters (Crassostrea gigas) are highly nutritious bivalve representing an important dietary constituent but may accumulate metals through feeding on suspended sediments from surrounding water, then represent a suitable tool for biomonitoring. MATERIALS AND METHODS The occurrence of trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Se, Sn, V, Zn) was investigated in Pacific Oysters (Cassostrea gigas) collected from Calich Lagoon in each season of 2019. Samples were homogenized and subjected to microwave acid digestion before being analyzed by inductively coupled plasma-mass spectrometer (ICP-MS). RESULTS The results showed a significant seasonal variation for temperature, dissolved oxygen, chlorophyll, and pH. Moreover, high significant seasonal variation in concentrations of Cd, Mn, Ni, and V was recorded. The highest values were found for Fe (128 mg kg⁻1 w.w.), and Al (112 mg kg⁻1 w.w.) in October, for Zn (113 mg kg⁻1 w.w.) in March and May. CONCLUSIONS Pacific Oysters were confirmed as suitable bioindicators of the health status of coastal lagoons; trace elements concentrations were highly affected by season of collection, and according to literature the highest values were recorded in autumn and summer. The EU legal limits for Cd and Pb were not exceeded, then the farmed oysters were safe to consumers.
Collapse
Affiliation(s)
- Domenico Meloni
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Via Vienna 2, Sassari 07100, Italy
| | - Alessandro Graziano Mudadu
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, Sassari 07100, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Anna Maria Bazzoni
- ARPAS-Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Via Rockefeller 58/60, Sassari 07100, Italy
| | - Alessandra Griglione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Rosa Avolio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Simonetto Serra
- AGRIS SARDEGNA - Agenzia per la ricerca in agricoltura, Centro di ricerca di Bonassai, località Bonassai SS 291 km 18,6, Olmedo, SS 07040, Italy
| | - Nicola Fois
- AGRIS SARDEGNA - Agenzia per la ricerca in agricoltura, Centro di ricerca di Bonassai, località Bonassai SS 291 km 18,6, Olmedo, SS 07040, Italy
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Rita Melillo
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, Sassari 07100, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy.
| |
Collapse
|
3
|
Detection and Characterization of Nodularin by Using Label-Free Surface-Enhanced Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms232415741. [PMID: 36555384 PMCID: PMC9779585 DOI: 10.3390/ijms232415741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Nodularin (NOD) is a potent toxin produced by Nodularia spumigena cyanobacteria. Usually, NOD co-exists with other microcystins in environmental waters, a class of cyanotoxins secreted by certain cyanobacteria species, which makes identification difficult in the case of mixed toxins. Herein we report a complete theoretical DFT-vibrational Raman characterization of NOD along with the experimental drop-coating deposition Raman (DCDR) technique. In addition, we used the vibrational characterization to probe SERS analysis of NOD using colloidal silver nanoparticles (AgNPs), commercial nanopatterned substrates with periodic inverted pyramids (KlariteTM substrate), hydrophobic Tienta® SpecTrimTM slides, and in-house fabricated periodic nanotrenches by nanoimprint lithography (NIL). The 532 nm excitation source provided more well-defined bands even at LOD levels, as well as the best performance in terms of SERS intensity. This was reflected by the results obtained with the KlariteTM substrate and the silver-based colloidal system, which were the most promising detection approaches, providing the lowest limits of detection. A detection limit of 8.4 × 10-8 M was achieved for NOD in solution by using AgNPs. Theoretical computation of the complex vibrational modes of NOD was used for the first time to unambiguously assign all the specific vibrational Raman bands.
Collapse
|
4
|
He Q, Wang W, Xu Q, Liu Z, Teng J, Yan H, Liu X. Microcystins in Water: Detection, Microbial Degradation Strategies, and Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013175. [PMID: 36293755 PMCID: PMC9603262 DOI: 10.3390/ijerph192013175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 05/12/2023]
Abstract
Microcystins are secondary metabolites produced by some cyanobacteria, a class of cyclic heptapeptide toxins that are stable in the environment. Microcystins can create a variety of adverse health effects in humans, animals, and plants through contaminated water. Effective methods to degrade them are required. Microorganisms are considered to be a promising method to degrade microcystins due to their high efficiency, low cost, and environmental friendliness. This review focuses on perspectives on the frontiers of microcystin biodegradation. It has been reported that bacteria and fungi play an important contribution to degradation. Analysis of the biodegradation mechanism and pathway is an important part of the research. Microcystin biodegradation has been extensively studied in the existing research. This review provides an overview of (1) pollution assessment strategies and hazards of microcystins in water bodies and (2) the important contributions of various bacteria and fungi in the biodegradation of microcystins and their degradation mechanisms, including mlr gene-induced (gene cluster expressing microcystinase) degradation. The application of biodegradable technology still needs development. Further, a robust regulatory oversight is required to monitor and minimize MC contamination. This review aims to provide more references regarding the detection and removal of microcystins in aqueous environments and to promote the application of biodegradation techniques for the purification of microcystin-contaminated water.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Yan
- Correspondence: (H.Y.); (X.L.)
| | | |
Collapse
|
5
|
Kalaitzidou MP, Alvanou MV, Papageorgiou KV, Lattos A, Sofia M, Kritas SK, Petridou E, Giantsis IA. Pollution Indicators and HAB-Associated Halophilic Bacteria Alongside Harmful Cyanobacteria in the Largest Mussel Cultivation Area in Greece. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095285. [PMID: 35564680 PMCID: PMC9104808 DOI: 10.3390/ijerph19095285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Taking into consideration the essential contribution of Mytilus galloprovincialis farming, it is of rising importance to add knowledge regarding bacterial species occurrence in water samples from aquaculture zones from the point of view of both the organism and public health. In the present study, we investigated the bacterial community existing in water samples from six Mytilus galloprovincialis aquaculture areas in the Thermaikos gulf, northern Greece, that may provoke toxicity in aquatic organisms and humans and may indicate environmental pollution in mussel production as well as algal blooms. Bacterial species were identified molecularly by sequencing of a partial 16s rRNA segment and were analyzed phylogenetically for the confirmation of the bacterial taxonomy. The results obtained revealed the presence of four bacterial genera (Halomonas sp., Planococcus sp., Sulfitobacter sp., and Synechocystis sp.). Members of the Halomonas and Sulfitobacter genera have been isolated from highly polluted sites, Planococcus bacteria have been identified in samples derived directly from plastic debris, and Synechocystis bacteria are in line with microcystin detection. In this context, the monitoring of the bacteria community in mussel aquaculture water samples from the Thermaikos gulf, the largest mussel cultivation area in Greece, represents an indicator of water pollution, microplastics presence, algal blooms, and toxin presence.
Collapse
Affiliation(s)
- Maria P. Kalaitzidou
- National Reference Laboratory for Marine Biotoxins, Department of Food Microbiology, Biochemical Control, Residues, Marine Biotoxins and Other Water Toxins, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, 54627 Thessaloniki, Greece;
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (M.V.A.); (A.L.)
| | - Konstantinos V. Papageorgiou
- 3rd Military Veterinary Hospital, General Staff, Hellenic Ministry of Defense, 15th Km Thessaloniki-Vasilika, 57001 Thessaloniki, Greece;
| | - Athanasios Lattos
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (M.V.A.); (A.L.)
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Spyridon K. Kritas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.K.); (E.P.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.K.); (E.P.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (M.V.A.); (A.L.)
- Correspondence:
| |
Collapse
|
6
|
Meloni D, Mudadu AG, Abete MC, Bazzoni AM, Griglione A, Pederiva S, Stella C, Serra S, Fois N, Esposito G, Squadrone S. Occurrence of trace elements in Mediterranean mussels ( Mytilus galloprovincialis Lamarck, 1819) from an experimental pilot farm in the Calich Lagoon (Sardinia, Italy). Ital J Food Saf 2022; 11:9970. [PMID: 35284342 PMCID: PMC8908439 DOI: 10.4081/ijfs.2022.9970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to determine trace elements in Mediterranean mussels (Mytilus galloprovincialis) from an experimental pilot farm of the Calich Lagoon, a typical Sardinian brackish area (Italy). Two sampling sessions were scheduled in February and May 2019 and the occurrence of 24 metals (Hg, Ag, Al, As, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mn, Mo, Ni, Pb, Rb, Se, Sn, Ti, V, Zn) in bivalves was considered. Environmental conditions of water (temperature, salinity, pH, dissolved oxygen, and chlorophyll a) were also measured in situ. A high significant (P<0.001) difference was reported for temperature, pH, and dissolved oxygen. Our results showed a significant sessional variation of Mo (P<0.001); Cd, V (P<0.01); Ni, Pb and Co (P<0.05) in examined M. galloprovincialis samples; as all values were higher in February than those for May session samples, meanwhile the highest levels were reported for Mg (mean±s.d. 1151±263 mg kg-1 wet weight), Al (mean±s.d. 341±192 mg kg-1 w.w.), and Fe (mean±s.d. 212 ±75 mg kg-1 w.w.) in February samples. The European Union uppermost values (EC Reg. 1881/2006) for Cd, Hg, and Pb were never overpassed. The results confirmed the role of M. galloprovincialis as one of the most appropriate biological indexes to track the presence of trace elements in brackish environments. It could be concluded that the current ecology of the Calich Lagoon suggests that compatibly with the transitional ecosystem, the classification as a bivalves' production area and the implementation of extensive shellfish farming can improve its production capacities. The knowledge of the lagoon ecology is an essential tool for its sustainable exploitation, preserving biodiversity, and mitigating the effects of anthropogenic activities on public health.
Collapse
Affiliation(s)
| | - Alessandro Graziano Mudadu
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | | | - Anna Maria Bazzoni
- ARPAS - Regional Agency for Environmental Protection of Sardinia, Sassari
| | | | - Sabina Pederiva
- Zooprophylactic Institute of Piemonte, Liguria e Valle d’Aosta, Torino
| | - Caterina Stella
- Zooprophylactic Institute of Piemonte, Liguria e Valle d’Aosta, Torino
| | - Simonetto Serra
- AGRIS SARDEGNA - Agency for Research in Agriculture, Bonassai Research Center, Olmedo (SS), Italia
| | - Nicola Fois
- AGRIS SARDEGNA - Agency for Research in Agriculture, Bonassai Research Center, Olmedo (SS), Italia
| | - Giuseppe Esposito
- Zooprophylactic Institute of Piemonte, Liguria e Valle d’Aosta, Torino
| | | |
Collapse
|
7
|
Mudadu AG, Bazzoni AM, Melillo R, Lorenzoni G, Piras G, Salza S, Cau S, Soro B, Vodret B, Tedde T, Fois N, Serra S, Virgilio S, Meloni D. Determination of phytoplankton in water samples, algal biotoxins, microbiological parameters and microplastics in Mediterranean mussels ( Mytilus galloprovincialis Lamarck, 1819) from an experimental pilot farm in the Calich Lagoon (Sardinia, Italy). Ital J Food Saf 2022; 11:9973. [PMID: 35284336 PMCID: PMC8908440 DOI: 10.4081/ijfs.2022.9973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
The aims of this paper were to collect and analyse preliminary data of phytoplankton in the water, biotoxins, Escherichia coli, Salmonella spp., Vibrio spp. and microplastic eventually present in farmed mussels, and to acquire information about the production capability from an experimental pilot farm of the Calich Lagoon. Two sampling sessions were carried out, in February and in May 2019, also monitoring the water condition (pH, temperature, salinity, dissolved oxygen, chlorophyll a). No potentially toxic algae were detected, and moreover no biotoxins (Paralytic Shellfish Poison, Diarrheic Shellfish Poison, Amnesic Shellfish Poison) were found in mussels. E.coli was present with the highest concentration in February (16000 MPN/100g e.p.). Salmonella and Vibrio spp. have not been detected. Almost a microplastic per grams was found, mainly fiber of different colours. Further studies, carried out for several months, will allow to better understand the possible problems related to the production of mussels in a lagoon not yet classified as a shellfish production area.
Collapse
Affiliation(s)
- Alessandro Graziano Mudadu
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Anna Maria Bazzoni
- ARPAS - Regional Agency for Environmental Protection of Sardinia, Sassari
| | - Rita Melillo
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Giuseppa Lorenzoni
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Gabriella Piras
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Sara Salza
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Simona Cau
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Barbara Soro
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Bruna Vodret
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Tiziana Tedde
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Nicola Fois
- AGRIS SARDEGNA - Agency for Research in Agriculture, Bonassai Research Center, Olmedo (SS)
| | - Simonetto Serra
- AGRIS SARDEGNA - Agency for Research in Agriculture, Bonassai Research Center, Olmedo (SS)
| | - Sebastiano Virgilio
- Complex Structure of Microbiology and Inspection of Food of Animal Origin, Experimental Zooprophylactic Institute of Sardinia, Sassari
| | - Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Italia
| |
Collapse
|
8
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
9
|
Kalaitzidou MP, Nannou CI, Lambropoulou DA, Papageorgiou KV, Theodoridis AM, Economou VK, Giantsis IA, Angelidis PG, Kritas SK, Petridou EJ. First report of detection of microcystins in farmed mediterranean mussels Mytilus galloprovincialis in Thermaikos gulf in Greece. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:8. [PMID: 33691804 PMCID: PMC7949245 DOI: 10.1186/s40709-021-00139-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microcystins are emerging marine biotoxins, produced by potentially toxic cyanobacteria. Their presence has been reported in aquatic animals in Greek freshwater, while data are few in marine environments. Since the climate change induces eutrophication and harmful algal blooms in coastal marine ecosystems affecting the public health, further research on microcystins' presence in marine waters is required. The aim of this study was to examine the potential presence of microcystins in mussels Mytilus galloprovincialis in the largest farming areas in Thermaikos gulf, in Northern Greece, and to investigate their temporal and spatial distribution, adding to the knowledge of microcystins presence in Greek Mediterranean mussels. RESULTS A 4-year microcystins' assessment was conducted from 2013 to 2016, in farmed Mediterranean mussels M. galloprovincialis, in five sampling areas in Thermaikos gulf, in northern Greece, where the 90% of the Greek mussels' farming activities is located. The isolation of potentially toxic cyanobacteria was confirmed by molecular methods. An initial screening was performed with a qualitative and quantitative direct monoclonal (DM) ELISA and results above 1 ng g-1 were confirmed for the occurrence of the most common microcystins-RR, -LR and -YR, by Ultra High Performance Liquid Chromatography (UHPLC) coupled with a high- resolution mass spectrometer (HRMS) (Orbitrap analyzer). Microcystin-RR and microcystin-LR were detected, while the intensity of microcystin-YR was below the method detection limit. Most samples that exhibited concentrations above 1 ng g-1 were detected during the warm seasons of the year and especially in spring. Results indicated an overestimation of the ELISA method, since concentrations ranged between 0.70 ± 0.15 ng g-1 and 53.90 ± 3.18 ng g-1, while the confirmation denoted that the levels of microcystins were 6 to 22 times lower. CONCLUSIONS Microcystin-RR and microcystin-LR were detected for the first time in mussel M. galloprovincialis, harvested from farms in Thermaikos gulf, in Central Macedonia, Greece. Their presence was linked to potentially toxic cyanobacteria. Bioaccumulation was observed in digestive gland, while the concentrations in muscles were found extremely low. Samples with levels above 1 ng g-1 were observed mostly during spring, confirming the seasonal distribution of microcystins. The comparison of the results by the ELISA and the LC-Orbitrap MS method indicated an overestimation of concentration by the ELISA method.
Collapse
Affiliation(s)
- Maria P. Kalaitzidou
- National Reference Laboratory for Marine Biotoxins, Department of Food Microbiology, Biochemical Control, Residues, Marine Biotoxins and other water toxins, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, Limnou 3A, 54627 Thessaloniki, Greece
| | - Christina I. Nannou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Konstantinos V. Papageorgiou
- 3rd Military Veterinary Hospital, General Staff, Hellenic Ministry of Defense, 15th km Thessaloniki-Vasilika, 57001 Thessaloniki, Greece
| | - Alexandros M. Theodoridis
- Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Vangelis K. Economou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Panagiotis G. Angelidis
- Laboratory of Ichthyology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Spyridon K. Kritas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evanthia J. Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Díez-Quijada Jiménez L, Guzmán-Guillén R, Cascajosa Lira A, Jos Á, Cameán AM. In vitro assessment of cyanotoxins bioaccessibility in raw and cooked mussels. Food Chem Toxicol 2020; 140:111391. [PMID: 32353443 DOI: 10.1016/j.fct.2020.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
The oral route by ingestion of water and food contaminated with cyanotoxins is the main route of exposure to these toxins. This study addresses for the first time the bioaccessibility of some of the most common Microcystins (MC-LR, MC-RR and MC-YR) and Cylindrospermopsin (CYN) simultaneously in raw and steamed mussels spiked at 250 ng/g fresh weight of each cyanotoxin, after an in vitro digestion, including the salivary (incubation with artificial saliva, 30s), gastric (with pepsin, 2h, pH 2), duodenal (with pancreatin and bile salts, 2h, pH 6.5) and colonic phases (with lactic-acid bacteria, 48h, pH 7.2). The results obtained suggest that the potential absorption of these cyanotoxins by consumption of contaminated mussels is lower than expected. After the total effect of cooking and digestion, the mean bioaccessibility levels recorded were 24.65% (CYN), 31.51% (MC-RR), 17.51% (MC-YR) and 13.20% (MC-LR). Moreover, toxins were transferred to the steaming waters at 3.77 ± 0.24 μg L-1 CYN, 2.29 ± 0.13 μg L-1 MC-LR, 6.60 ± 0.25 μg L-1 MC-RR and 3.83 ± 0.22 μg L-1 MC-YR. These bioaccessibility results should be considered for a more accurate risk assessment related to these cyanotoxins in mussels, including the fact that the steaming waters could also represent a risk after human consumption.
Collapse
Affiliation(s)
| | | | | | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|