1
|
Fernando MG, Silva R, Fernando WMADB, de Silva HA, Wickremasinghe AR, Dissanayake AS, Sohrabi HR, Martins RN, Williams SS. Effect of Virgin Coconut Oil Supplementation on Cognition of Individuals with Mild-to-Moderate Alzheimer's Disease in Sri Lanka (VCO-AD Study): A Randomized Placebo-Controlled Trial. J Alzheimers Dis 2023; 96:1195-1206. [PMID: 37980665 DOI: 10.3233/jad-230670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Virgin coconut oil (VCO) is a potential therapeutic approach to improve cognition in Alzheimer's disease (AD) due to its properties as a ketogenic agent and antioxidative characteristics. OBJECTIVE This study aimed to investigate the effect of VCO on cognition in people with AD and to determine the impact of apolipoprotein E (APOE) ɛ4 genotype on cognitive outcomes. METHODS Participants of this double-blind placebo-controlled trial (SLCTR/2015/018, 15.09.2015) were 120 Sri Lankan individuals with mild-to-moderate AD (MMSE = 15-25), aged > 65 years, and they were randomly allocated to treatment or control groups. The treatment group was given 30 mL/day of VCO orally and the control group, received similar amount of canola oil, for 24 weeks. The Mini-Mental Sate Examination (MMSE) and Clock drawing test were performed to assess cognition at baseline and at the end of the intervention. Blood samples were collected and analyzed for lipid profile and glycated hemoglobin (HbA1 C) levels.∥Results:There were no significant difference in cognitive scores, lipid profile, and HbA1 C levels between VCO and control groups post-intervention. The MMSE scores, however, improved among APOE ɛ4 carriers who had VCO, compared to non-carriers (2.37, p = 0.021). APOE ɛ4 status did not influence the cognitive scores in the control group. The attrition rate was 30%.∥Conclusion:Overall, VCO did not improve cognition in individuals with mild-to-moderate AD following a 24-week intervention, compared to canola oil. However, it improved the MMSE scores in APOE ɛ4 carriers. Besides, VCO did not compromise lipid profile and HbA1 C levels and is thus safe to consume.
Collapse
Affiliation(s)
- Malika G Fernando
- Department of Psychiatry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Renuka Silva
- Department of Applied Nutrition, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - W M A D Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - H Asita de Silva
- Department of Pharmacology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | | | - Asoka S Dissanayake
- Department of Physiology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shehan S Williams
- Department of Psychiatry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| |
Collapse
|
2
|
Ohashi H, Tsuji M, Oguchi T, Momma Y, Nohara T, Ito N, Yamamoto K, Nagata M, Kimura AM, Kiuchi Y, Ono K. Combined Treatment with Curcumin and Ferulic Acid Suppressed the Aβ-Induced Neurotoxicity More than Curcumin and Ferulic Acid Alone. Int J Mol Sci 2022; 23:ijms23179685. [PMID: 36077082 PMCID: PMC9456505 DOI: 10.3390/ijms23179685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that leads to progressive cognitive decline. Several effective natural components have been identified for the treatment of AD. However, it is difficult to obtain conclusive evidence on the safety and effectiveness of natural components, because a variety of factors are associated with the progression of AD pathology. We hypothesized that a therapeutic effect could be achieved by combining multiple ingredients with different efficacies. The purpose of this study was thus to evaluate a combination treatment of curcumin (Cur) and ferulic acid (FA) for amyloid-β (Aβ)-induced neuronal cytotoxicity. The effect of Cur or FA on Aβ aggregation using thioflavin T assay was confirmed to be inhibited in a concentration-dependent manner by Cur single or Cur + FA combination treatment. The effects of Cur + FA on the cytotoxicity of human neuroblastoma (SH-SY5Y) cells induced by Aβ exposure were an increase in cell viability, a decrease in ROS and mitochondrial ROS, and repair of membrane damage. Combination treatment showed an overall higher protective effect than treatment with Cur or FA alone. These results suggest that the combined action mechanisms of Cur and FA may be effective in preventing and suppressing the progression of AD.
Collapse
Affiliation(s)
- Hideaki Ohashi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
- Correspondence: (M.T.); (K.O.)
| | - Tatsunori Oguchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yutaro Momma
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Tetsuhito Nohara
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Naohito Ito
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Ken Yamamoto
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Miki Nagata
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Atsushi Michael Kimura
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
- Correspondence: (M.T.); (K.O.)
| |
Collapse
|
3
|
Tampio J, Markowicz-Piasecka M, Montaser A, Rysä J, Kauppinen A, Huttunen KM. L-type Amino Acid Transporter 1 Utilizing Ferulic Acid Derivatives Show Increased Drug Delivery in the Mouse Pancreas Along with Decreased Lipid Peroxidation and Prostaglandin Production. Mol Pharm 2022; 19:3806-3819. [PMID: 36027044 PMCID: PMC9644403 DOI: 10.1021/acs.molpharmaceut.2c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Oxidative stress and pathological changes of Alzheimer’s
disease (AD) overlap with metabolic diseases, such as diabetes mellitus
(DM). Therefore, tackling oxidative stress with antioxidants is a
compelling drug target against multiple chronic diseases simultaneously.
Ferulic acid (FA), a natural antioxidant, has previously been studied
as a therapeutic agent against both AD and DM. However, FA suffers
from poor bioavailability and delivery. As a solution, we have previously
reported about L-type amino acid transporter 1 (LAT1)-utilizing derivatives
with increased brain delivery and efficacy. In the present study,
we evaluated the pharmacokinetics and antioxidative efficacy of the
two derivatives in peripheral mouse tissues. Furthermore, we quantified
the LAT1 expression in studied tissues with a targeted proteomics
method to verify the transporter expression in mouse tissues. Additionally,
the safety of the derivatives was assessed by exploring their effects
on hemostasis in human plasma, erythrocytes, and endothelial cells.
We found that both derivatives accumulated substantially in the pancreas,
with over a 100-times higher area under curve compared to the FA.
Supporting the pharmacokinetics, the LAT1 was highly expressed in
the mouse pancreas. Treating mice with the LAT1-utilizing derivative
of FA lowered malondialdehyde and prostaglandin E2 production
in the pancreas, highlighting its antioxidative efficacy. Additionally,
the LAT1-utilizing derivatives were found to be hemocompatible in
human plasma and endothelial cells. Since antioxidative derivative
1 was substantially delivered into the pancreas along the previously
studied brain, the derivative can be considered as a safe dual-targeting
drug candidate in both the pancreas and the brain.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| |
Collapse
|
4
|
Total hip arthroplasty after periacetabular osteotomy versus primary total hip arthroplasty: a propensity-matched cohort study. Arch Orthop Trauma Surg 2021; 141:1411-1417. [PMID: 33625543 DOI: 10.1007/s00402-021-03817-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Controversy still exist regarding the outcomes of total hip arthroplasty (THA) after periacetabular osteotomy (PAO). The purpose of this study was to compare the clinical and radiologic outcomes of THA after PAO with primary THA based on balanced baseline characteristics with propensity score matching. METHODS Using propensity score matching, 1:2 matched cohort to facilitate comparison between patients who underwent primary cementless THA with or without previous PAO. Then, we compared the operative time, blood loss, complications, postoperative clinical score, cup size, position, and alignment of acetabular cup, and degree of bony coverage on cup between the two groups. RESULTS Thirty-five patients with 37 hips who underwent THA after PAO were successfully matched to 70 patients with 74 hips who underwent primary THA. The operative time and blood loss in THA after PAO were significantly longer and larger than those in primary THA (P < 0.001 and = 0.0067, respectively). Clinical score showed no difference between the groups (P > 0.05). For THA after PAO, the cup size and bony coverage were larger (P = 0.0014 and < 0.001, respectively), and the hip center was significantly higher and laterally (P < 0.001 and < 0.001, respectively) comparing primary THA. CONCLUSION This study demonstrated longer operative time and larger blood loss without difference in the postoperative clinical score or complications between THA after PAO and primary THA. Furthermore, THA after PAO provided larger cup size and superolaterally positioned cup center without difference in the cup inclination or anteversion comparing primary THA.
Collapse
|
5
|
Kolaj I, Wang Y, Ye K, Meek A, Liyanage SI, Santos C, Weaver DF. Ferulic acid amide derivatives with varying inhibition of amyloid-β oligomerization and fibrillization. Bioorg Med Chem 2021; 43:116247. [PMID: 34157569 DOI: 10.1016/j.bmc.2021.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized, in part, by the misfolding, oligomerization and fibrillization of amyloid-β (Aβ). Evidence suggests that the mechanisms underpinning Aβ oligomerization and subsequent fibrillization are distinct, and may therefore require equally distinct therapeutic approaches. Prior studies have suggested that amide derivatives of ferulic acid, a natural polyphenol, may combat multiple AD pathologies, though its impact on Aβ aggregation is controversial. We designed and synthesized a systematic library of amide derivatives of ferulic acid and evaluated their anti-oligomeric and anti-fibrillary capacities independently. Azetidine tethered, triphenyl derivatives were the most potent anti-oligomeric agents (compound 2i: IC50 = 1.8 µM ± 0.73 µM); notably these were only modest anti-fibrillary agents (20.57% inhibition of fibrillization), and exemplify the poor correlation between anti-oligomeric/fibrillary activities. These data were subsequently codified in an in silico QSAR model, which yielded a strong predictive model of anti-Aβ oligomeric activity (κ = 0.919 for test set; κ = 0.737 for validation set).
Collapse
Affiliation(s)
- Igri Kolaj
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Yanfei Wang
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Kailin Ye
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - S Imindu Liyanage
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Clarissa Santos
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada
| | - Donald F Weaver
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD477, Toronto, ON M5T 0S7, Canada; Department of Pharmaceutical Chemistry, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
6
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
7
|
Okuda M, Fujita Y, Sugimoto H. The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice. Biol Pharm Bull 2020; 42:1694-1706. [PMID: 31582657 DOI: 10.1248/bpb.b19-00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and its prevention and treatment is a worldwide issue. Many natural components considered to be effective against AD have been identified. However, almost all clinical trials of these components for AD reported inconclusive results. We thought that multiple factors such as amyloid β (Aβ) and tau progressed the pathology of AD and that a therapeutic effect would be obtained by using multiple active ingredients with different effects. Thus, in this study, we treated ferulic acid (FA), phosphatidylserine (PS) and curcumin (Cur) in combination or alone to APPswe/PS1dE9 transgenic mice and evaluated cognitive function by Y-maze test. Consequently, only the three-ingredient group exhibited a significant improvement in cognitive function compared to the control group. In addition, we determined the amounts of Aβ, brain-derived neurotrophic factor (BDNF), interleukin (IL)-1β, acetylcholine and phosphorylated tau in the mouse brains after the treatment. In the two-ingredient (FA and PS) group, a significant decrease in IL-1β and an increasing trend in acetylcholine were observed. In the Cur group, significant decreases in Aβ and phosphorylated tau and an increasing trend in BDNF were observed. In the three-ingredient group, all of them were observed. These results indicate that the intake of multiple active ingredients with different mechanisms of action for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Michiaki Okuda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University.,Green Tech Co., Ltd
| | - Yuki Fujita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University.,Green Tech Co., Ltd
| | | |
Collapse
|
8
|
Nagai N, Fukuoka Y, Sato K, Otake H, Taga A, Oka M, Hiramatsu N, Yamamoto N. The Intravitreal Injection of Lanosterol Nanoparticles Rescues Lens Structure Collapse at an Early Stage in Shumiya Cataract Rats. Int J Mol Sci 2020; 21:ijms21031048. [PMID: 32033321 PMCID: PMC7036956 DOI: 10.3390/ijms21031048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
We designed an intravitreal injection formulation containing lanosterol nanoparticles (LAN-NPs) via the bead mill method and evaluated the therapeutic effect of LAN-NPs on lens structure collapse and opacification using two rat cataract models (SCR-N, rats with slight lens structure collapse; SCR-C, rats with the combination of a remarkable lens structure collapse and opacification). The particle size of lanosterol in the LAN-NPs was around 50–400 nm. A single injection of LAN-NPs (0.5%) supplied lanosterol into the lens for 48 h, and no irritation or muddiness was observed following repeated injections of LAN-NPs for 6 weeks (once every 2 days). Moreover, LAN-NPs repaired the slight collapse of the lens structure in SCR-N. Although the remarkable changes in the lens structure of SCR-C were not repaired by LAN-NP, the onset of opacification was delayed. In addition, the increase of cataract-related factors (Ca2+ contents, nitric oxide levels, lipid peroxidation and calpain activity levels) in the lenses of SCR-C was attenuated by the repeated injection of LAN-NPs. It is possible that a deficiency of lanosterol promotes the production of oxidative stress. In conclusion, it is difficult to improve serious structural collapse with posterior movement of the lens nucleus with a supplement of lanosterol via LAN-NPs. However, the intravitreal injection of LAN-NPs was found to repair the space and structural collapse in the early stages in the lenses.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.F.); (K.S.); (H.O.); (A.T.)
- Correspondence: ; Tel.: +81-6-4307-3638
| | - Yuya Fukuoka
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.F.); (K.S.); (H.O.); (A.T.)
| | - Kanta Sato
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.F.); (K.S.); (H.O.); (A.T.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.F.); (K.S.); (H.O.); (A.T.)
| | - Atsushi Taga
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.F.); (K.S.); (H.O.); (A.T.)
| | - Mikako Oka
- Faculty of pharmacy, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0066, Japan;
| | - Noriko Hiramatsu
- Laboratory of Molecularbiology and Histochemistry, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan; (N.H.); (N.Y.)
| | - Naoki Yamamoto
- Laboratory of Molecularbiology and Histochemistry, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan; (N.H.); (N.Y.)
| |
Collapse
|
9
|
Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Cytosine-functionalized bioinspired hydrogels for ocular delivery of antioxidant transferulic acid. Biomater Sci 2020; 8:1171-1180. [PMID: 31995040 DOI: 10.1039/c9bm01582e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contact lenses (CLs) are being pointed out as feasible platforms for controlled delivery of ophthalmic drugs. Bioinspired strategies may endow CLs with affinity for a given drug by mimicking its physiological receptor using adequate functional monomers and tuning their conformation in the space through the molecular imprinting technology. However, there are some active substances, such as efficient antioxidant agents, that cannot be used as templates because they degrade during polymerization or even hinder the polymerization itself. Therefore, the development of CLs able to sustain the release of antioxidants for the prevention and/or treatment of several age-related and light-induced eye diseases has not been explored yet. Searching for an alternative bioinspired strategy, the present work relies on the fact that some drugs owe their therapeutic action to their ability to interact with nucleotides that build up DNA and RNA. Thus, the aim of this work was to design hydrogels functionalized with the nitrogenous base cytosine for the controlled uptake and release of transferulic acid (TA) having a complementary chemical structure in terms of hydrogen bonding and π-π stacking ability. Hydrogels were prepared from mixtures of 2-hydroxyethyl methacrylate (HEMA), glycidyl methacrylate (GMA) and ethyleneglycolphenylether methacrylate (EGPEM). GMA was used as a bridge to immobilize cytosine after hydrogel synthesis, while EGPEM was added to reinforce hydrophobic interactions with TA. The hydrogels were characterized in terms of suitability to be used as CLs (swelling, light transmission, mechanical properties, biocompatibility) and capability to host TA and sustain its release in lachrymal fluid while maintaining the antioxidant activity. Relevantly, the bioinspired CLs favored TA accumulation in cornea and sclera tissues.
Collapse
Affiliation(s)
- Angela Varela-Garcia
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Wu Q, Cao Y, Liu M, Liu F, Brantner AH, Yang Y, Wei Y, Zhou Y, Wang Z, Ma L, Wang F, Pei H, Li H. Traditional Chinese Medicine Shenmayizhi Decoction Ameliorates Memory And Cognitive Impairment Induced By Scopolamine Via Preventing Hippocampal Cholinergic Dysfunction In Rats. Neuropsychiatr Dis Treat 2019; 15:3167-3176. [PMID: 31814724 PMCID: PMC6858809 DOI: 10.2147/ndt.s214976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical trials have illustrated that Shenmayizhi decoction (SMYZ) could improve the cognitive functions in patients with dementia. However, the mechanism needs to be explored. METHODS Fifty adult male rats (Wistar strain) were divided into five groups equally and randomly, including control, model, and SMYZ of low dose, medium dose and high dose. Rats in each group received a daily gavage of respective treatment. Rats in control and model group were administrated by the same volume of distilled water. Memory impairment was induced by intraperitoneal administration of scopolamine (0.7 mg/kg) for 5 continuous days. Four weeks later, Morris water maze (MWM) was performed to evaluate the spatial memory in all rats. Then, rats were sacrificed and the hippocampus was removed for further tests. Furthermore, Western blot analysis was employed to assess the levels of acetylcholine M1 receptor (M1), acetylcholine M2 receptor (M2), acetylcholinesterase (AChE) and cholineacetyltransferase (ChAT). AChE and ChAT activities were determined. RESULTS The SMYZ decoction significantly improved behavioral performance of rats in high dose. The SMYZ decoction in three doses exhibited anti-acetylcholinesterase activity. In addition, a high dose of SMYZ promoted ChAT activity. Moreover, a high dose of SMYZ increased the level of ChAT and declined the level of AChE assessed by Western blotting. Besides, an increased level of M1 receptor was found after treatment. CONCLUSION Shenmayizhi decoction could mitigate scopolamine-induced cognitive deficits through the preventative effect on cholinergic system dysfunction.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing100078, People’s Republic of China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Fang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Adelheid H Brantner
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yu Zhou
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, Groningen9747 AG, The Netherlands
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Feixue Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| |
Collapse
|
11
|
Kim JK, Park SU. A recent overview on the biological and pharmacological activities of ferulic acid. EXCLI JOURNAL 2019; 18:132-138. [PMID: 30956646 PMCID: PMC6449676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/26/2019] [Indexed: 12/03/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea,*To whom correspondence should be addressed: Sang Un Park, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea; Tel.: +82-42-821-5730, Fax: +82-42-822-2631, E-mail:
| |
Collapse
|
12
|
Nhiri M, Ben Mrid R, Bouargalne Y, El Omari R. New insights into the therapeutic effects of phenolic acids from sorghum seeds. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Tang Y, Min Z, Xiang XJ, Liu L, Ma YL, Zhu BL, Song L, Tang J, Deng XJ, Yan Z, Chen GJ. Estrogen-related receptor alpha is involved in Alzheimer's disease-like pathology. Exp Neurol 2018; 305:89-96. [PMID: 29641978 DOI: 10.1016/j.expneurol.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Estrogen-related receptor alpha (ERRα) is a transcriptional factor associated with mitochondrial biogenesis and energy metabolism. However, little is known about the role of ERRα in Alzheimer's disease (AD). Here, we report that in APP/PS1 mice, an animal model of AD, ERRα protein and mRNA were decreased in a region- and age-dependent manner. In HEK293 cells that stably express human full-length β-amyloid precursor protein (APP), overexpression of ERRα inhibited the amyloidogenic processing of APP and consequently reduced Aβ1-40/1-42 level. ERRα overexpression also attenuated Tau phosphorylation at selective sites, with the concomitant reduction of glycogen synthase kinase 3β (GSK3β) activity. Interestingly, alterations of APP processing and Tau phosphorylation induced by hydrogen peroxide were reversed by ERRα overexpression in HEK/APP cells. These results indicated that ERRα plays a functional role in AD pathology. By attenuating both amyloidogenesis and Tau phosphorylation, ERRα may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ying Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhuo Min
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Jiao Xiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Liu
- Thirteenth people's Hospital of Chongqing, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|