1
|
An Y, Gao D, He Y, Ge N, Guo J, Sun S, Wang C, Yang F. Guarding against digestive-system cancers: Unveiling the role of Chk2 as a potential therapeutic target. Genes Dis 2025; 12:101191. [PMID: 39524544 PMCID: PMC11550749 DOI: 10.1016/j.gendis.2023.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
Digestive-system cancers represent major threats to human health; however, the mechanisms underlying tumorigenesis and radiochemotherapy resistance have remained elusive. Therefore, an urgent need exists for identifying key drivers of digestive system tumorigenesis and novel targeted therapeutics. The checkpoint kinase 2 (Chk2) regulates cell-cycle progression, and Chk2 dysregulation or Chk2 mutations can lead to the development of various cancers, which makes Chk2 an important research topic. This review summarizes the roles of Chk2 in DNA-damage responses, cell-cycle regulation, autophagy, and homeostasis maintenance. We describe relationships between tumorigenesis and cell-cycle dysregulation induced by Chk2 mutations. In addition, we summarize evidence indicating that Chk2 can serve as a novel therapeutic target, based on its contributions to radiochemotherapy-resistance reversion and progress made in developing antitumor agents against Chk2. The prevailing evidence supports the conclusion that further research on Chk2 will provide a deeper understanding of digestive-system tumorigenesis and should suggest novel therapeutic targets.
Collapse
Affiliation(s)
- Yucheng An
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Duolun Gao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY 10016, USA
| | - Nan Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Caixia Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
2
|
Ferragut Cardoso AP, Banerjee M, Al-Eryani L, Sayed M, Wilkey DW, Merchant ML, Park JW, States JC. Temporal Modulation of Differential Alternative Splicing in HaCaT Human Keratinocyte Cell Line Chronically Exposed to Arsenic for up to 28 Wk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17011. [PMID: 35072517 PMCID: PMC8785870 DOI: 10.1289/ehp9676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.
Collapse
Affiliation(s)
- Ana P. Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mohammed Sayed
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Juw W. Park
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - J. Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Mohammadi C, Mahdavinezhad A, Saidijam M, Bahreini F, Sedighi Pashaki A, Gholami MH, Najafi R. DCLK1 Inhibition Sensitizes Colorectal Cancer Cells to Radiation Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:23-33. [PMID: 34268251 PMCID: PMC8256833 DOI: 10.22088/ijmcm.bums.10.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P <0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P <0.01). Moreover, the expression of cancer stem cells markers (P <0.01), EMT related genes (P <0.01), and DNA repair proteins including pATM (P <0.01) and γH2AX (P <0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P <0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P <0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Bahreini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Corrigendum to "XRRA1 Targets ATM/CHK1/2-Mediated DNA Repair in Colorectal Cancer". BIOMED RESEARCH INTERNATIONAL 2021; 2021:3030267. [PMID: 33728327 PMCID: PMC7935600 DOI: 10.1155/2021/3030267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
[This corrects the article DOI: 10.1155/2017/5718968.].
Collapse
|
5
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
6
|
Kim TW, Hong DW, Park JW, Hong SH. CB11, a novel purine-based PPARɣ ligand, overcomes radio-resistance by regulating ATM signalling and EMT in human non-small-cell lung cancer cells. Br J Cancer 2020; 123:1737-1748. [PMID: 32958825 PMCID: PMC7723055 DOI: 10.1038/s41416-020-01088-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPARγ) agonists frequently induce cell death in human non-small-cell lung cancer (NSCLC) cells. However, majority of NSCLC patients acquire resistance after cancer therapy, and it is still unclear. Methods In this study we investigated the apoptotic mechanism and the anti-cancer effects of a novel purine-based PPARγ agonist, CB11 (8-(2-aminophenyl)-3-butyl-1,6,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione), on human NSCLC cells. CB11 mediates PPARγ-dependent cell death, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) collapse, cell cycle arrest, lactate dehydrogenase (LDH) cytotoxicity, and caspase-3 activity in human NSCLC cells. Results CB11 causes cell death via ROS-mediated ATM-p53-GADD45α signalling in human NSCLC cells, and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, decreases cell death by inhibiting CB11-mediated ATM signalling. In a xenograft experiment, CB11 dramatically reduced tumour volume when compared to a control group. Furthermore, CB11 induced cell death by inhibiting epithelial-to-mesenchymal transition (EMT) under radiation exposure in radiation-resistant human NSCLC cells. However, PPARγ deficiency inhibited cell death by blocking the ATM-p53 axis in radiation/CB11-induced radiation-resistant human NSCLC cells. Conclusions Taken together, our results suggest that CB11, a novel PPARγ agonist, may be a novel anti-cancer agent, and it could be useful in a therapeutic strategy to overcome radio-resistance in radiation-exposed NSCLC.
Collapse
Affiliation(s)
- Tae Woo Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Da-Won Hong
- Laboratory of RNA Cell Biology, Graduate Department of Bioconvergence Science and Technology, Dankook University, Jukjeon-ro 152, Suji-gu, Yongin-si, Gyeonggi-do, 16892, Republic of Korea
| | - Joung Whan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Sung Hee Hong
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea.
| |
Collapse
|
7
|
Pang W, Li Y, Guo W, Shen H. Cyclin E: a potential treatment target to reverse cancer chemoresistance by regulating the cell cycle. Am J Transl Res 2020; 12:5170-5187. [PMID: 33042412 PMCID: PMC7540110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The cyclin family plays important roles in regulating the proliferative cycle of mammalian cells. Among the members of this family, cyclin E regulates multiple downstream molecules, such as the retinoblastoma susceptibility gene (RB1) and the transcription factor E2F, by interacting with cyclin-dependent kinases (CDKs) and plays an important role in the cell cycle transition from G1 to S phase. Over the years, studies have shown that cyclin E is closely related to the chemotherapy resistance of tumor cells and that its expression in tumor cells is closely related to prognosis. The dysregulated expression of cyclin E has a definite effect not only on the cell cycle regulation of tumor cells but also on the presence of low-molecular-weight cyclin E (LMW-E) and other cyclins that render tumor cells resistant. In addition, many studies in recent years have confirmed that chemotherapy resistance mediated by cyclin E can be reversed. For example, the combination of a cyclin-dependent kinase inhibitor (CKI) with anticancer drugs or the therapeutic targeting of related genes improves chemotherapy resistance by reducing the level or activity of cyclin E in tumor cells. This review summarizes the specific processes by which cyclin E regulates the cell cycle, its relationship to chemotherapy resistance in cancer, and its potential as a clinical therapeutic target to reverse chemotherapy resistance.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yashan Li
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Hong Shen
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
8
|
Chen S, Zhou Q, Guo Z, Wang Y, Wang L, Liu X, Lu M, Ju L, Xiao Y, Wang X. Inhibition of MELK produces potential anti-tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway. J Cell Mol Med 2019; 24:1804-1821. [PMID: 31821699 PMCID: PMC6991658 DOI: 10.1111/jcmm.14878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
We aimed to investigate the biological function of MELK and the therapeutic potential of OTSSP167 in human bladder cancer (BCa). First, we observed overexpression of MELK in BCa cell lines and tissues and found that it was associated with higher tumour stage and tumour grade, which was consistent with transcriptome analysis. High expression of MELK was significantly correlated with poor prognosis in BCa patients, and MELK was found to have a role in the cell cycle, the G1/S transition in mitosis, and DNA repair and replication. Furthermore, BCa cells presented significantly decreased proliferation capacity following silencing of MELK or treatment with OTSSP167 in vitro and in vivo. Functionally, reduction in MELK or treatment of cells with OTSSP167 could induce cell cycle arrest and could suppress migration. In addition, these treatments could activate phosphorylation of ATM and CHK2, which would be accompanied by down‐regulated MDMX, cyclin D1, CDK2 and E2F1; however, p53 and p21 would be activated. Opposite results were observed when MELK expression was induced. Overall, MELK was found to be a novel oncogene in BCa that induces cell cycle arrest via the ATM/CHK2/p53 pathway. OTSSP167 displays potent anti‐tumour activities, which may provide a new molecule‐based strategy for BCa treatment.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zicheng Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Enshi Clinical College of Wuhan University, Enshi, China
| | - Yejinpeng Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Dong Y, Zhang D, Cai M, Luo Z, Zhu Y, Gong L, Lei Y, Tan X, Zhu Q, Han S. SPOP regulates the DNA damage response and lung adenocarcinoma cell response to radiation. Am J Cancer Res 2019; 9:1469-1483. [PMID: 31392082 PMCID: PMC6682716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023] Open
Abstract
Speckle-type POZ protein (SPOP) plays an important role in maintaining genome stability. Disability or mutation of the SPOP gene has been reported to contribute to prostate cancer incidence and prognosis. However, the functions of SPOP in lung cancer remain poorly understood, especially in lung adenocarcinoma (LUAD). Here, we found that SPOP affects the LUAD cell response to radiation by regulating the DNA damage response (DDR) pathway. SPOP is widely expressed in lung cancer cell lines, and SPOP protein levels are upregulated when cells experience DNA damage. SPOP knockdown affects DDR repair kinetics, apoptosis and cell cycle checkpoints that are induced by IR (ionizing radiation). Furthermore, we found that SPOP positively regulates the expression of DDR factors Rad51 and Ku80. Taken together, these data indicate the essential roles of SPOP in the DDR signaling pathways and LUAD cell response to radiation.
Collapse
Affiliation(s)
- Yiping Dong
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Dan Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Mengjiao Cai
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Zhenzhen Luo
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Yue Zhu
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Liuyun Gong
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Yutiantian Lei
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Xinyue Tan
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan UniversityChengdu 610041, China
| | - Suxia Han
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| |
Collapse
|
10
|
Tang Y, Chen K, Wu X, Wei Z, Zhang SY, Song B, Zhang SW, Huang Y, Meng J. DRUM: Inference of Disease-Associated m 6A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Front Genet 2019; 10:266. [PMID: 31001320 PMCID: PMC6456716 DOI: 10.3389/fgene.2019.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 01/27/2023] Open
Abstract
Recent studies have revealed that the RNA N 6-methyladenosine (m6A) modification plays a critical role in a variety of biological processes and associated with multiple diseases including cancers. Till this day, transcriptome-wide m6A RNA methylation sites have been identified by high-throughput sequencing technique combined with computational methods, and the information is publicly available in a few bioinformatics databases; however, the association between individual m6A sites and various diseases are still largely unknown. There are yet computational approaches developed for investigating potential association between individual m6A sites and diseases, which represents a major challenge in the epitranscriptome analysis. Thus, to infer the disease-related m6A sites, we implemented a novel multi-layer heterogeneous network-based approach, which incorporates the associations among diseases, genes and m6A RNA methylation sites from gene expression, RNA methylation and disease similarities data with the Random Walk with Restart (RWR) algorithm. To evaluate the performance of the proposed approach, a ten-fold cross validation is performed, in which our approach achieved a reasonable good performance (overall AUC: 0.827, average AUC 0.867), higher than a hypergeometric test-based approach (overall AUC: 0.7333 and average AUC: 0.723) and a random predictor (overall AUC: 0.550 and average AUC: 0.486). Additionally, we show that a number of predicted cancer-associated m6A sites are supported by existing literatures, suggesting that the proposed approach can effectively uncover the underlying epitranscriptome circuits of disease mechanisms. An online database DRUM, which stands for disease-associated ribonucleic acid methylation, was built to support the query of disease-associated RNA m6A methylation sites, and is freely available at: www.xjtlu.edu.cn/biologicalsciences/drum.
Collapse
Affiliation(s)
- Yujiao Tang
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Xiangyu Wu
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Bowen Song
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Yufei Huang
- Department of Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jia Meng
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|