1
|
Tang B, Li Y, Xu X, Du G, Wang H. Electroacupuncture Ameliorates Neuronal Injury by NLRP3/ASC/Caspase-1 Mediated Pyroptosis in Cerebral Ischemia-Reperfusion. Mol Neurobiol 2024; 61:2357-2366. [PMID: 37874480 DOI: 10.1007/s12035-023-03712-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/16/2023] [Indexed: 10/25/2023]
Abstract
NLRP3/ASC/Caspase-1 mediated pyroptosis is one of the important causes of cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture (EA) is widely used in clinical treatment of ischemic stroke. However, mechanism of EA on ischemic stroke remains unclear. Therefore, on basis of a previous work, this study used middle cerebral artery occlusion (MCAO) 2 h and then reperfusion 7 days in rats to simulate brain I/R process. EA with Bahui (GV20) and Zusanli (ST36) and VX-765 (a specific inhibitor of Caspase-1) was performed. In this study, we found that EA improved cerebral infarct size and neuronal damage, including ultrastructural injury, and ameliorated nitro/oxidative stress in cerebral I/R. Additionally, EA treatment significantly decreased ASC, Caspase-1, GSDMD, and IL-1β expression and VX-765 treatment significantly decreased NLRP3, Caspase-1, and IL-1β expression. This proved that EA can regulate NLRP3/ASC/Caspase-1 mediated pyroptosis, improve neuronal injury during cerebral I/R, and provide basic experimental data for clinical treatment.
Collapse
Affiliation(s)
- Bin Tang
- Department of Acupuncture-Moxibustion and Tuina, Qilu Hospital of Shandong University, Shandong University, No. 107 Wenhuaxi Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Yan Li
- Department of Acupuncture-Moxibustion and Tuina, Qilu Hospital of Shandong University, Shandong University, No. 107 Wenhuaxi Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Xifa Xu
- Department of Acupuncture-Moxibustion, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guangzhong Du
- Department of Acupuncture-Moxibustion and Tuina, Qilu Hospital of Shandong University, Shandong University, No. 107 Wenhuaxi Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Huanyuan Wang
- Department of Acupuncture-Moxibustion and Tuina, Qilu Hospital of Shandong University, Shandong University, No. 107 Wenhuaxi Road, Lixia District, Jinan, 250012, People's Republic of China.
| |
Collapse
|
2
|
QIAO L, SHI Y, TAN L, JIANG Y, YANG Y. Efficacy of electroacupuncture stimulating Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) on spatial learning and memory deficits in rats with insomnia induced by para-chlorophenylalanine: a single acupoint combined acupoints. J TRADIT CHIN MED 2023; 43:704-714. [PMID: 37454255 PMCID: PMC10320443 DOI: 10.19852/j.cnki.jtcm.20230308.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investiage the effect of electroacupuncture (EA) at a single acupoint of Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) and at combined acupoints of Shenmen (HT7) and Baihui (GV20) and Sanyinjiao (SP6) on the PKA/CREB and BDNF/TrkB signaling, as well as neuroapoptosis and neurogenesis in hippocampus and elucidate the underlying mechanism of single and combined acupoints on ameliorating spatial learning and memory deficits in a rat model of primary insomnia. METHODS Primary insomnia was modeled by intraperitoneal injection of para-chlorophenylalanine (PCPA) once daily for 2 d. EA was applied at Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), or Shenmen (HT7) + Baihui (GV20) + Sanyinjiao (SP6) (combined) for 30 min daily for 4 d. Spatial learning and memory function was evaluated by the Morris water maze (MWM) test. Protein expressions of hippocampal cAMP-dependent protein kinase (PKA)-Cβ, phosphorylated cAMP-responsive element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) were evaluated by Western blotting. Neuronal apoptosis in the hippocampus was detected with the transferase-mediated dUTP-X nick end labeling assay. Endogenous neurogenesis was examined with bromodeoxyuridine staining. The MWM test and hippocampal p-CREB, BDNF, and TrkB protein levels in the combined acupoints group were evaluated after the administration of a PKA-selective inhibitor (H89). RESULTS Spatial learning and memory were significantly impaired in rats with insomnia. The spatial learning deficits were ameliorated in the Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), and combined groups; this improvement was significantly greater in the combined group than the single acupoint groups. The spatial memory impairment was improved in the combined, Baihui (GV20), and Shenmen (HT7) groups, but not the Sanyinjiao (SP6) group. The expressions of PKA-Cβ, p-CREB, BDNF, and TrkB were decreased in rats with insomnia. All these proteins were significantly upregulated in the combined group. PKA/p-CREB protein levels were elevated in the Baihui (GV20) and Shenmen (HT7) groups, whereas BDNF/TrkB expression was upregulated in the Sanyinjiao (SP6) group. The staining results showed significant attenuation of hippocampal cell apoptosis and increased numbers of proliferating cells in the combined group, whereas the single acupoint groups only showed decreased numbers of apoptotic cells. In the combined group, the PKA inhibitor reversed the improvement of spatial memory and upregulation of p-CREB expression caused by EA, but did not affect its activation of BDNF/TrkB signaling. CONCLUSIONS EA at the single acupoints Baihui (GV20), Shenmen (HT7), or Sanyinjiao (SP6) had an ameliorating effect on the spatial learning and memory deficits induced by insomnia. EA at combined acupoints exerted a synergistic effect on the improvements in spatial learning and memory impairment in rats with insomnia by upregulating the hippocampal PKA/CREB and BDNF/TrkB signaling, facilitating neurogenesis, and inhibiting neuronal apoptosis. These findings indicate that EA at combined acupoints [(Baihui (GV20), Shenmen (HT7), and Sanyinjiao (SP6)] achieves a more pronounced regulation of hippocampal neuroplasticity than EA at single acupoints, which may partly explain the underlying mechanisms by which EA at combined acupoints exerts a better ameliorative effect on the cognitive dysfunction caused by insomnia.
Collapse
Affiliation(s)
- Lina QIAO
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yinan SHI
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lianhong TAN
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yanshu JIANG
- 2 College of Acupuncture-moxibustion and Massage, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Yongsheng YANG
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
3
|
Zeng R, Lai F, Huang M, Zhu D, Chen B, Tao L, Huang W, Lai C, Ding B. Feasibility of electroacupuncture at Baihui (GV20) and Zusanli (ST36) on survival with a favorable neurological outcome in patients with postcardiac arrest syndrome after in-hospital cardiac arrest: study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud 2023; 9:8. [PMID: 36639647 PMCID: PMC9837931 DOI: 10.1186/s40814-023-01239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND At present, even the first-line medication epinephrine still shows no evidence of a favourable neurological outcome in patients with sudden cardiac arrest (SCA). The high mortality of patients with postcardiac arrest syndrome (PCAS) can be attributed to brain injury, myocardial dysfunction, systemic ischaemia/reperfusion response, and persistent precipitating pathology. Targeted temperature management, the only clinically proven method in the treatment of PCAS, is still associated with a series of problems that have not been completely resolved. Acupuncture is a crucial therapy in traditional Chinese medicine. On the basis of the results of previous studies, we hypothesize that electroacupuncture (EA) might provide therapeutic benefits in the treatment of PCAS. This study will explore the feasibility of EA on SCA patients. METHODS This is a prospective pilot, randomized controlled clinical trial. Eligible patients with PCAS after in-hospital cardiac arrest (IHCA) admitted to our department will be randomly allocated to the control group or the EA group. Both groups will receive standard therapy according to American Heart Association guidelines for cardiopulmonary resuscitation. However, the EA group will also receive acupuncture at the Baihui acupoint (GV20) and Zusanli acupoint (ST36) with EA stimulation for 30 min using a dense-dispersed wave at frequencies of 20 and 100 Hz, a current intensity of less than 10 mA, and a pulse width of 0.5 ms. EA treatment will be administered for up to 14 days (until either discharge or death). The primary endpoint is survival with a favourable neurological outcome. The secondary endpoints are neurological scores, cardiac function parameters, and other clinical parameters, including Sequential Organ Failure Assessment (SOFA) scores and Acute Physiology and Chronic Health Evaluation (APACHE) II scores, on days 0 to 28. DISCUSSION This study will provide crucial clinical evidence on the efficacy of EA in PCAS when used as an adjunctive treatment with AHA standard therapy. TRIAL REGISTRATION chictr.org.cn : ChiCTR2000040040. Registered on 19 November 2020. Retrospectively registered. http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Ruifeng Zeng
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Fang Lai
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Fangcun Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510145 Guangdong China
| | - Manhua Huang
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Decai Zhu
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Fangcun Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510145 Guangdong China
| | - Baijian Chen
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Lanting Tao
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Ersha Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510105 Guangdong China
| | - Wei Huang
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Chengzhi Lai
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Banghan Ding
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| |
Collapse
|
4
|
Ma T, Li C, Nie Z, Miao H, Wu F. Regulatory Effect of Electroacupuncture on Hypothalamic Serotonin and its Receptor in Rats with Cerebral Ischemia. Curr Neurovasc Res 2023; 20:237-243. [PMID: 37309759 PMCID: PMC10556395 DOI: 10.2174/1567202620666230612110156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have shown that the neurological damage caused by middle cerebral artery occlusion (MCAO) is not only limited to local infarction but can also cause secondary damage in distant sites, such as the hypothalamus. 5-hydroxytryptamine (5-HT)/ 5-HT transporter (5-HTT) and 5-HT receptor 2A (5-HT2A) are important in the treatment of cerebrovascular diseases. OBJECTIVE This study aimed to study the effect of electroacupuncture (EA) on the expression of 5- HT, 5-HTT, and 5-HT2A in the hypothalamus of rats with ischemic brain injury and to explore the protective effect and potential mechanism of EA on the secondary injury of cerebral ischemia. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: sham group, model group, and EA group. The permanent middle cerebral artery occlusion (pMCAO) method was used to induce ischemic stroke in rats. In the EA group, the Baihui (GV20) and Zusanli (ST36) points were selected for treatment, which was administered once per day for two consecutive weeks. The neuroprotective effect of EA was evaluated by nerve defect function scores and Nissl staining. The content of 5-HT in hypothalamus was detected by enzyme linked immunosorbent assay (ELISA), and the expression of 5-HTT and 5-HT2A were detected by Western blot. RESULTS Compared with that in the sham group, the nerve defect function score in the model group rats was significantly increased, the hypothalamus tissue showed obvious nerve damage, the levels of 5-HT and the expression of 5-HTT were significantly reduced, and the expression of 5-HT2A was significantly increased. After 2 weeks of EA treatment, the nerve defect function scores of pMCAO rats were significantly reduced, the hypothalamic nerve injury was significantly reduced, the levels of 5-HT and the expression of 5-HTT were significantly increased, and the expression of 5-HT2A was significantly decreased. CONCLUSION EA has a certain therapeutic effect on hypothalamic injury secondary to permanent cerebral ischemia, and its potential mechanism may be closely related to the upregulation of 5-HT and 5-HTT expression and the downregulation of 5-HT2A expression.
Collapse
Affiliation(s)
- Tongjun Ma
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Chenyu Li
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| |
Collapse
|
5
|
Nie Z, Miao H, Li C, Wu F. Electroacupuncture inhibits the expression of HMGB1/RAGE and alleviates injury to the primary motor cortex in rats with cerebral ischemia. Transl Neurosci 2023; 14:20220316. [PMID: 37829255 PMCID: PMC10566473 DOI: 10.1515/tnsci-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Background The high-mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) signaling pathway holds promise as a potential therapeutic target for ischemic brain injury. The effects of FPS-ZM1 and electroacupuncture (EA) on activation of the HMGB1/RAGE signaling pathway after cerebral ischemia remain uncertain. Methods Middle cerebral artery occlusion (MCAO) model was established. Neurological function was assessed using Longa scores. Nissl staining was used to observe the morphology of neurons. The expression levels of HMGB1 and RAGE were assayed with immunofluorescence staining and western blot. Results The results showed that EA and FPS-ZM1 could reduce the neural function score and neurons cell injury in cerebral ischemia rats by inhibiting the expression of HMGB1 and RAGE in primary motor cortex (M1) region. In addition, EA combined with FPS-ZM1 had a better therapeutic effect. Conclusions The HMGB1/RAGE pathway could be activated after cerebral ischemia. Both EA and FPS-ZM1 improved neurological deficits and attenuated neuronal damage in rats. They had synergistic effects. These interventions were observed to mitigate brain damage by suppressing the activation of HMGB1/RAGE.
Collapse
Affiliation(s)
- Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Chenyu Li
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| |
Collapse
|
6
|
Liu F, Lu Z, Li Z, Wang S, Zhuang L, Hong M, Huang K. Electroacupuncture Improves Cerebral Ischemic Injury by Enhancing the EPO-JAK2-STAT5 Pathway in Rats. Neuropsychiatr Dis Treat 2021; 17:2489-2498. [PMID: 34354356 PMCID: PMC8331202 DOI: 10.2147/ndt.s316136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Clinically, electroacupuncture (EA) improves cerebral ischemic injury, but its mechanism remains unknown. The aim of this study was to confirm the protective effects of EA on focal cerebral ischemia (FCI)-induced injury and the possible mechanism. METHODS Sprague-Dawley (SD) rats served as the FCI model and were divided into the sham, model, EA, AG490 and EA+AG490 groups. Rats in the EA and EA+AG490 groups were acupunctured at the Baihui (GV20) and Dazhui (GV14) acupoints, and those in the AG490 and EA+AG490 groups were administered an intracerebroventricular injection of AG490 (a Janus-tyrosine kinase-2 (JAK-2) phosphorylation inhibitor). Neurological deficits and morphological changes in the ischemic cortex were observed through neurological deficit scoring and HE staining, respectively, and neuronal apoptosis was examined using the TUNEL assay. Transmission electron microscopy was used to observe neuronal ultrastructure, and HIF-1α, erythropoietin (EPO), phosphorylated (p)-JAK2, p-STAT5, HSP70, Bax and Bcl-2 expression was measured by RT-PCR and immunohistochemistry. RESULTS FCI model rats showed obvious neurological deficits and neuronal apoptosis compared with sham rats. EA alleviated FCI-induced neurological deficits, improved neuronal ultrastructure, reduced neuronal apoptosis, and induced HIF-1α, EPO, p-JAK2, p-STAT5, HSP70 and Bcl-2 expression in a time-dependent manner. In contrast, AG490 treatment impaired the effects of EA on neurological deficits, neuronal apoptosis and HIF-1α, EPO, p-JAK2, p-STAT5, HSP70, Bax and Bcl-2 expression. CONCLUSION EA at GV20 and GV14 could improve neurological deficits and reduce neuronal apoptosis, thereby improving FCI-induced injury, which may be related to enhancing the EPO-JAK2-STAT5 pathway.
Collapse
Affiliation(s)
- Fang Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhen Lu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ziyu Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shichao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Shichao Wang Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Jichang Road, Baiyun District, Guangzhou, 510405, People's republic of ChinaTel +86020-36591357 Email
| | - Lixing Zhuang
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Min Hong
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Kangbai Huang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Kangbai Huang Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun District, Guangzhou, 510405, People’s Republic of ChinaTel +86020-36585261 Email
| |
Collapse
|
7
|
Electroacupuncture promotes axonal regrowth by attenuating the myelin-associated inhibitors-induced RhoA/ROCK pathway in cerebral ischemia/reperfusion rats. Brain Res 2020; 1748:147075. [DOI: 10.1016/j.brainres.2020.147075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022]
|
8
|
Electroacupuncture Improves Cognitive Function in Senescence-Accelerated P8 (SAMP8) Mice via the NLRP3/Caspase-1 Pathway. Neural Plast 2020; 2020:8853720. [PMID: 33204250 PMCID: PMC7657681 DOI: 10.1155/2020/8853720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background. Clinically, electroacupuncture (EA) is the most common therapy for aging-related cognitive impairment (CI). However, the underlying pathomechanism remains unidentified. The aims of this study were to observe the effect of EA on cognitive function and explore the potential mechanism by which EA acts on the NLRP3/caspase-1 signaling pathway. Main Methods. Thirty male SAMP8 mice were randomly divided into the model, the 2 Hz EA and 10 Hz EA groups. Ten male SAMR1 mice were assigned to the control group. Cognitive function was assessed through the Morris water maze test. Hippocampal morphology and cell death were observed by HE and TUNEL staining, respectively. The serum IL-1β, IL-6, IL-18, and TNF-α levels were measured by ELISA. Hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-18, Aβ, and tau proteins were detected by Western blotting. Key Findings. Cognitive function, hippocampal morphology, and TUNEL-positive cell counts were improved by both EA frequencies. The serum IL-1β, IL-6, IL-18, and TNF-α levels were decreased by EA treatment. However, 10 Hz EA reduced the number of TUNEL-positive cells in the CA1 region and serum IL-1β and IL-6 levels more effectively than 2 Hz EA. NLRP3/caspase-1 pathway-related proteins were significantly downregulated by EA, but 2 Hz EA did not effectively reduce ASC protein expression. Interestingly, both EA frequencies failed to reduce the expression of Aβ and tau proteins. Significance. The effects of 10 Hz EA at the GV20 and ST36 acupoints on the NLRP3/caspase-1 signaling pathway may be a mechanism by which this treatment relieves aging-related CI in mice.
Collapse
|
9
|
Li X, Sun Y, Jin Q, Song D, Diao Y. Kappa opioid receptor agonists improve postoperative cognitive dysfunction in rats via the JAK2/STAT3 signaling pathway. Int J Mol Med 2019; 44:1866-1876. [PMID: 31545485 PMCID: PMC6777679 DOI: 10.3892/ijmm.2019.4339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common and well‑known complication following surgery, particularly cardiopulmonary bypass (CPB) surgery. There are currently no suitable treatments for POCD, which is associated with increased illness and mortality rates. The present study aimed to identify a novel treatment for POCD. The protective effect of kappa opioid receptor (KOR) agonists on POCD in rats following CPB was determined and the regulatory mechanism of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was examined. The rats were randomly divided into five groups: Sham operation (Sham group), CPB operation (CPB group), KOR agonist + CPB (K group), KOR agonist + norbinaltorphimine (nor‑BNI) + CPB (NK group), and KOR agonist + JAK2‑STAT3 specific pathway inhibitor + CPB (AG group). A water maze test and neurological function scores were used to evaluate POCD. Hematoxylin and eosin staining was used to observe hippocampal neurons. ELISA was used to detect the levels of inflammatory factors, oxidative stress factors and brain injury markers. Immunofluorescence was used to visualize the neurons. TUNEL staining and western blotting were used to detect neuronal apoptosis, and western blotting was also used to detect JAK2/STAT3 pathway‑related proteins. The KOR agonists significantly improved POCD. S‑100β and NSE detection revealed that KOR agonists alleviated brain damage in CPB rats, and this result was reversed by KOR antagonists. The KOR agonists led to a significantly reduced inflammatory response and oxidative stress, as determined by ELISA detection, and attenuated hippocampal neuronal apoptosis, as revealed by TUNEL staining and western blotting, compared with the results in the CPB group. Finally, the KOR agonists inhibited the expression levels of phosphorylated (p‑)JAK2 and p‑STAT3, rather than total JAK2 and STAT3, compared with levels in the CPB group. Taken together, KOR agonists improved POCD in rats with CPB by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xi Li
- Postgraduate Training Base of Jinzhou Medical University in The General Hospital of Northern Theater Command, Jinzhou, Liaoning 121013, P.R. China
| | - Yingjie Sun
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Jin
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Dandan Song
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
10
|
Wang H, Chen S, Zhang Y, Xu H, Sun H. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide 2019; 91:23-34. [PMID: 31323277 DOI: 10.1016/j.niox.2019.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
Abstract
The accumulation of dysfunctional mitochondria induced by the impairment of the autophagy-lysosome pathway (ALP), especially mitophagy is an important cause of cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture (EA) exerts remarkable effects in treating ischemic stroke; however, the detailed mechanism remains unclear. In this study, rats were treated with mitochondrial permeability transition pore (mPTP) opening inhibitor, peroxynitrite (ONOO-) scavenger, or selective inhibitor of mitophagy activation during 2-h middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion in combination with EA treatment. RNA-Seq analysis showed that EA treatment in cerebral I/R was linked to the autophagosome, the PI3K/Akt signaling pathway and metabolic pathways. We found that I/R resulted in significantly mitochondrial function impairments including decreased mitochondrial membrane potential (MMP) and ATP levels, aggregation of damaged mitochondria, excessive nitro/oxidative stress, PI3K/Akt/mTOR-mediated ALP dysfunction and deficiency of Pink1/Parkin-mediated mitophagy clearance. The treatment with EA, cyclosporine-A (CsA, a potent inhibitor of mPTP opening) or FeTMPyP (a type of ONOO- scavenger) could significantly increase MMP and/or ATP levels, improve mitochondrial function and decrease neuronal injury. At the same time, EA also improved ALP dysfunction and the deficiency of mitophagy clearance; however, mitochondrial division inhibitor-1 (Mdivi-1, a selective inhibitor of mitophagy activation) blocked mitophagy clearance and aggravated neuronal injury. Taken together, EA ameliorates nitro/oxidative stress-induced mitochondrial functional damage and decreases the accumulation of damaged mitochondria via Pink1/Parkin-mediated mitophagy clearance to protect cells against neuronal injury in cerebral I/R.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Xiao LY, Yang JW, Wang XR, Ye Y, Yang NN, Yan CQ, Liu CZ. Acupuncture Rescues Cognitive Impairment and Upregulates Dopamine- β-Hydroxylase Expression in Chronic Cerebral Hypoperfusion Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5423961. [PMID: 30112399 PMCID: PMC6077593 DOI: 10.1155/2018/5423961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023]
Abstract
Alteration of dopamine (DA) and noradrenaline (NA) contributes to cognitive function. Acupuncture has been shown to affect DA and NA in chronic cerebral hypoperfusion (CCH) rats. However, the effect of acupuncture on DA-β-hydroxylase (DBH), the biosynthetic enzyme of NA, remains unknown. In CCH rats we established chronic hypoperfusion by bilateral common carotid artery occlusion (two-vessel occlusion, 2VO) and treated them with acupuncture. Acupuncture displayed beneficial effects on hippocampus-dependent memory impairments, including nonspatial and spatial memory. That is also reflected in hippocampus long-term-potentiation (LTP). Moreover, DBH expression in the hippocampus and DBH activity in cerebrospinal fluid were upregulated after acupuncture treatment. In conclusion, these in vivo findings suggest that acupuncture exerts a therapeutic effect on hippocampus-dependent memory and hippocampus LTP in CCH rats, which may be partially related to the modulation of DBH in the hippocampus.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing 100029, China
| | - Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Na-Na Yang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Chao-Qun Yan
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| |
Collapse
|
12
|
Nishimura K, Goto K, Nakagawa H. Effect of erythropoietin production induced by hypoxia on autophagy in HepG2 cells. Biochem Biophys Res Commun 2018; 495:1317-1321. [DOI: 10.1016/j.bbrc.2017.11.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022]
|