1
|
Varlı M, Ngo MT, Kim SM, Taş İ, Zhou R, Gamage CD, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. A fatty acid-rich fraction of an endolichenic fungus Phoma sp. suppresses immune checkpoint markers via AhR/ARNT and ESR1. Heliyon 2023; 9:e19185. [PMID: 37662726 PMCID: PMC10474435 DOI: 10.1016/j.heliyon.2023.e19185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Lung cancer has the highest mortality rates worldwide. The disease is caused by environmental pollutants, smoking, and many other factors. Recent treatments include immunotherapeutics, which have shown some success; however, the search for new therapeutics is ongoing. Endolichenic fungi produce a whale of a lot of secondary metabolites, the therapeutic effects of which are being evaluated. Here, we used a crude extract and subfractions of the endolichenic fungus, Phoma sp. (EL006848), isolated from the Pseudevernia furfuracea. It was identified the fatty acid components, palmitic acid, stearic acid, and oleic acid, exist in subfractions E1 and E2. In addition, EL006848 and its fatty acids fractions suppressed benzo[a]pyrene (an AhR ligand)- induced expression of PD-L1 to inhibit the activity of multiple immune checkpoints. E2 subfraction, which had a higher fatty acid content than E1, downregulated expression of AhR/ARNT and several human transcription factors related to ESR1. Moreover, E2 showed a strong inhibitory effect on STAT3 expression and mild effect on NF-kB activity. These results suggest that fatty acids extracted from an endolichenic fungus can exert strong immunotherapeutic effects.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Men Thi Ngo
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D.B. Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Seoul 04310, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
2
|
Kelvin Barros Dias K, Lima Cardoso A, Alice Farias da Costa A, Fonseca Passos M, Emmerson Ferreira da Costa C, Narciso da Rocha Filho G, Helena de Aguiar Andrade E, Luque R, Adriano Santos do Nascimento L, Coelho Rodrigues Noronha R. Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: a systematic review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
3
|
Almeida F, Corrêa M, Zaera AM, Garrigues T, Isaac V. Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Lobato Rodrigues AB, Martins RL, Rabelo ÉDM, Tomazi R, Santos LL, Brandão LB, Faustino CG, Ferreira Farias AL, dos Santos CBR, de Castro Cantuária P, Galardo AKR, de Almeida SSMDS. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS One 2021; 16:e0254225. [PMID: 34242328 PMCID: PMC8270136 DOI: 10.1371/journal.pone.0254225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, β-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.
Collapse
Affiliation(s)
| | - Rosany Lopes Martins
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Érica de Menezes Rabelo
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Rosana Tomazi
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lizandra Lima Santos
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lethícia Barreto Brandão
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Cleidjane Gomes Faustino
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | | | | | - Patrick de Castro Cantuária
- Amapaense Herbarium, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Sheylla Susan Moreira da Silva de Almeida
- Department of Exact and Technological Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| |
Collapse
|
5
|
Abdel-Ghany HSM, Abdel-Shafy S, Abuowarda M, El-Khateeb RM, Hoballah EM, Fahmy MM. Acaricidal activity of Artemisia herba-alba and Melia azedarach oil nanoemulsion against Hyalomma dromedarii and their toxicity on Swiss albino mice. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:241-262. [PMID: 33934282 DOI: 10.1007/s10493-021-00618-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Biopesticides such as essential oils (EOs) are considered an improvement for integrated pest control as they appear to be less toxic to the environment than chemical acaricides. The current study aimed to evaluate the acaricidal activity of Artemisia herba-alba and Melia azedarach oil loaded nano-emulsion as alternatives for chemical acaricides against the camel tick Hyalomma dromedarii, besides evaluating their toxic effect on Swiss albino mice. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of loaded nano-emulsions.The immersion test was used for the bioassay of both loaded nanoemulsions on tick stages (egg, nymph, larva, and adult). Mortality percentages and LC50 values of each tick stage were calculated. Reproductive performance for the survived engorged females after treatment was monitored. The toxicity of both loaded nano-emulsions was evaluated on Swiss albino mice by an oral dose of 1500 mg/kg/day for five successive days. The hematological, biochemical, and histopathological changes were evaluated. TEM characterization revealed spherical droplets for A. herba-alba and M. azedarach oil loaded nano-emulsion with droplet size ranging from 62 to 69 nm and 52-91 nm, respectively. FTIR revealed the absence of extra peaks in the loaded nano-emulsions that confirmed no chemical changes existed by ultrasonication. The LC50 values of A. herba-alba and M. azedarach oil loaded nano-emulsion on embryonated eggs, larvae, engorged nymphs, and unfed adults were 0.3 and 1.1%, 0.7 and 1.7%, 0.3 and 0.4%, 4.4 and 22.2%, respectively. The egg productive index (EPI), egg number, and hatchability percentage were lower in the treated females compared with Butox 5% (deltamethrin) and control. The hematological picture and biochemical analysis revealed insignificant changes in the treatment group compared with the negative control group. The liver of the A. herba-alba and M. azedarach oil loaded nano-emulsion treated group exhibited vacuolar degeneration and infiltration of lymphocytic cells. The kidney of mice treated with A. herba-alba and M. azedarach oil loaded nano-emulsion showed hemolysis and slight degeneration of epithelial cells of tubules. It is concluded that A. herba-alba and M. azedarach oil loaded nano-emulsion have good acaricidal activity against camel tick H. dromedarii.
Collapse
Affiliation(s)
- Hoda S M Abdel-Ghany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Mai Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rabab M El-Khateeb
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Essam M Hoballah
- Department of Agriculture Microbiology, Agricultural and Biological Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Fahmy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One 2021; 16:e0246470. [PMID: 33556110 PMCID: PMC7870081 DOI: 10.1371/journal.pone.0246470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Anopheles stephensi with three different biotypes is a major vector of malaria in Asia. It breeds in a wide range of habitats. Therefore, safer and more sustainable methods are needed to control its immature stages rather than chemical pesticides. The larvicidal and antibacterial properties of the Pelargonium roseum essential oil (PREO) formulations were investigated against mysorensis and intermediate forms of An. stephensi in laboratory conditions. A series of nanoemulsions containing different amounts of PREO, equivalent to the calculated LC50 values for each An. stephensi form, and various quantities of surfactants and co-surfactants were developed. The physical and morphological properties of the most lethal formulations were also determined. PREO and its major components, i.e. citronellol (21.34%), L-menthone (6.41%), linalool (4.214%), and geraniol (2.19%), showed potent larvicidal activity against the studied mosquitoes. The LC50/90 values for mysorensis and intermediate forms were computed as 11.44/42.42 ppm and 12.55/47.69 ppm, respectively. The F48/F44 nanoformulations with 94% and 88% lethality for the mysorensis and intermediate forms were designated as optimized formulations. The droplet size, polydispersity index, and zeta-potential for F48/F44 were determined as 172.8/90.95 nm, 0.123/0.183, and -1.08/-2.08 mV, respectively. These results were also confirmed by TEM analysis. Prepared formulations displayed antibacterial activity against larval gut bacteria in the following order of decreasing inhibitory: LC90, optimized nanoemulsions, and LC50. PREO-based formulations were more effective against mysorensis than intermediate. Compared to the crude PREO, the overall larvicidal activity of all nanoformulations boosted by 20% and the optimized formulations by 50%. The sensitivity of insect gut bacteria may be a crucial factor in determining the outcome of the effect of toxins on target insects. The formulations designed in the present study may be a good option as a potent and selective larvicide for An. stephensi.
Collapse
Affiliation(s)
- Maryam Dehghankar
- Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Azar Tahghighi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Karami
- Department of Parasitology and Mycology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Sharma S, Loach N, Gupta S, Mohan L. Phyto-nanoemulsion: An emerging nano-insecticidal formulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules 2020; 25:molecules25225333. [PMID: 33207537 PMCID: PMC7698178 DOI: 10.3390/molecules25225333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this work was to prepare a nanoemulsion containing the essential oil of Protium heptaphyllum resin and to evaluate the larvicidal activity and the residual larvicidal effect against Aedes aegypti. The essential oil was identified by gas chromatography coupled to a mass spectrometer, and the nanoemulsions were prepared using a low-energy method and characterized by photon correlation spectroscopy. The results indicated the major constituents as p-cimene (27.70%) and α-Pinene (22.31%). Nanoemulsions had kinetic stability and a monomodal distribution in a hydrophilic-lipophilic balance of 14 with particle diameters of 115.56 ± 1.68 nn and zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed larvicidal action with LC50 = 2.91 µg∙mL−1 and residual larvicidal effect for 72 h after application to A. aegypti larvae. Consequently, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin could be used against infectious disease vectors.
Collapse
|
9
|
de Oliveira Ferraz T, Ferreira DQ, Mourão RHV, Formiga FR, Carvalho JCT, Fernandes CP. Nano-emulsification of Aeollanthus suaveolens Mart. Ex Spreng essential oil modifies its neuroeffects? Drug Deliv Transl Res 2020; 10:1764-1770. [PMID: 32876880 DOI: 10.1007/s13346-020-00846-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
Oil in water nano-emulsions are drug delivery systems constituted by liquid lipophilic nano-droplets dispersed through the external aqueous phase, often reaching the kinetic stability with surfactant as stabilizers. Essential oils can be the oily phase or the source of bioactive compounds. In this study, the essential oil of Aeollanthus suaveolens-a plant used in folk medicine due to its psychopharmacological effects-was used for preparation of fine nano-emulsions by a low-energy titrating method. Monodisperse small nano-droplets (ca. 70 nm; PdI 0.200) were assembled by using blends of non-ionic surfactants, indicating modulation on surfactant system lead to altering the physical property. In a separate set of experiments, we investigated the role of this modulation on biological properties of the optimal nano-emulsion. The zebrafish embryos were more susceptible to the nano-emulsion than the bulk essential oil, showing the improved bioactivity due to nano-sizing. Therefore, adult zebrafish was treated, and paralysis was observed in the groups treated with the nano-emulsion, being this finding in accordance with hypnosis. At the same essential oil dose, another behavior was observed, suggesting that expected dose-dependent effects associated to sedative-hypnotics can be achieved by nano-sizing of psychoactive essential oils. This paper contributes to the state-of-art drug delivery systems by opening perspectives for novel sedative-hypnotics nano-emulsified essentials oils that can reach hypnotic effects at considerably lower dose, when compared with bulk materials, being useful for further completed dose-response studies.Graphical abstract.
Collapse
Affiliation(s)
- Thamara de Oliveira Ferraz
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil.,Laboratory of Phytopharmaceutical Nanobiotechnology, Federal University of Amapá, Macapá, Brazil
| | - Diego Quaresma Ferreira
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil
| | | | - Fabio Rocha Formiga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil.,Post-graduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife/PE, Brazil
| | - José Carlos Tavares Carvalho
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil.,Laboratory of Drug Research, Federal University of Amapá, Macapá, Brazil
| | - Caio Pinho Fernandes
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil. .,Laboratory of Phytopharmaceutical Nanobiotechnology, Federal University of Amapá, Macapá, Brazil.
| |
Collapse
|
10
|
Mustafa IF, Hussein MZ. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1608. [PMID: 32824489 PMCID: PMC7466655 DOI: 10.3390/nano10081608] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| |
Collapse
|
11
|
de Souza MA, da Silva L, Dos Santos MAC, Macêdo MJF, Lacerda-Neto LJ, Coutinho HDM, de Oliveira LCC, Cunha FAB. Larvicidal Activity of Essential Oils Against Aedes aegypti (Diptera: Culicidae). Curr Pharm Des 2020; 26:4092-4111. [PMID: 32767924 DOI: 10.2174/1381612826666200806100500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.
Collapse
Affiliation(s)
- Mikael A de Souza
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Larissa da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Maria A C Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Márcia J F Macêdo
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Luiz J Lacerda-Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Lígia C C de Oliveira
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Francisco A B Cunha
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| |
Collapse
|
12
|
Duarte JL, Maciel de Faria Motta Oliveira AE, Pinto MC, Chorilli M. Botanical insecticide-based nanosystems for the control of Aedes (Stegomyia) aegypti larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28737-28748. [PMID: 32458306 DOI: 10.1007/s11356-020-09278-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Aedes (Stegomyia) aegypti is a cosmopolitan species that transmits arbovirus of medical importance as dengue, Zika, and chikungunya. The main strategy employed for the control of this mosquito is the use of larvicidal agents. However, the overuse of synthetic chemical larvicides has led to an increase in resistant insects, making management difficult. Therefore, the use of botanical insecticide-based nanosystems as an alternative to the use of synthetic agents for the control of Ae. aegypti has gained more considerable attention in the last years, mainly due to the advantages of nanostructured delivery systems, such as (a) controlled release; (b) greater surface area; (c) improvement of biological activity; (d) protection of natural bioactive agents from the environment and thus achieving stability; and (e) lipophilic drugs are easier dispersed even in aqueous vehicles. This review summarizes the current knowledge about botanical insecticide-based nanosystems as larvicidal against Ae. aegypti larvae. The majority of papers used metallic nanoparticles (NPs) as larvicidal agents, mainly silver nanoparticles (AgNPs), showing potential for their use as an alternative, followed by nanoemulsions containing vegetable oils, most essential oils, nanosystems that allow the dispersion of this high hydrophobic product in water, the environment of larval development. The final section describes scientific findings about the mode of action of these NPs, showing the gap about this subject in literature.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Anna Eliza Maciel de Faria Motta Oliveira
- Department of Health and biological sciences, Federal University of Amapá-UNIFAP, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá, AP, 68903-361, Brazil
| | - Mara Cristina Pinto
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
13
|
Abstract
Nanotechnology, particularly nanoemulsions (NEs), have gained increasing interest from researchers throughout the years. The small-sized droplet with a high surface area makes NEs important in many industries. In this review article, the components, properties, formation, and applications are summarized. The advantages and disadvantages are also described in this article. The formation of the nanosized emulsion can be divided into two types: high and low energy methods. In high energy methods, high-pressure homogenization, microfluidization, and ultrasonic emulsification are described thoroughly. Spontaneous emulsification, phase inversion temperature (PIT), phase inversion composition (PIC), and the less known D-phase emulsification (DPE) methods are emphasized in low energy methods. The applications of NEs are described in three main areas which are food, cosmetics, and drug delivery.
Collapse
|
14
|
Morikawa T, Nagatomo A, Kitazawa K, Muraoka O, Kikuchi T, Yamada T, Tanaka R, Ninomiya K. Collagen Synthesis-Promoting Effects of Andiroba Oil and its Limonoid Constituents in Normal Human Dermal Fibroblasts. J Oleo Sci 2018; 67:1271-1277. [DOI: 10.5650/jos.ess18143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| | | | | | | | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| |
Collapse
|
15
|
Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules 2017; 22:molecules22111990. [PMID: 29149027 PMCID: PMC6150371 DOI: 10.3390/molecules22111990] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022] Open
Abstract
Baccharis reticularia DC. is a plant species from the Asteraceae family that is endemic to Brazil. Despite the great importance of Baccharis genus, no study has been carried out regarding either the phytochemical composition of B. reticularia or the evaluation of its larvicidal potential. Considering the intrinsic immiscibility of essential oils, this study shows larvicidal nanoemulsions containing the B. reticularia phytochemically characterized essential oil and its main constituent against Aedes aegypti. The major compound found was d-limonene (25.7%). The essential oil inhibited the acetylcholinesterase, one of the main targets of insecticides. The required hydrophile-lipophile balance of both nanoemulsions was 15.0. The mean droplet sizes were around 90.0 nm, and no major alterations were observed after 24 h of preparation for both formulations. After 48 h of treatment, the estimated LC50 values were 118.94 μg mL-1 and 81.19 μg mL-1 for B. reticularia essential oil and d-limonene nanoemulsions, respectively. Morphological alterations evidenced by scanning electron micrography were observed on the larvae treated with the d-limonene nanoemulsion. This paper demonstrated a simple and ecofriendly method for obtaining B. reticularia essential oil and d-limonene aqueous nanoemulsions by a non-heating and solvent-free method, as promising alternatives for Aedes aegypti control.
Collapse
|