1
|
Qin H, Feng J, Wu X. Effects and mechanisms of acupuncture on women related health. Front Med 2024; 18:46-67. [PMID: 38151668 DOI: 10.1007/s11684-023-1051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Globally, public health interventions have resulted in a 30-year increase in women's life expectancy. However, women's health has not increased when socioeconomic status is ignored. Women's health has become a major public health concern, for those women from developing countries are still struggling with infectious and labor-related diseases, and their counterparts in developed countries are suffering from physical and psychological disorders. In recent years, complementary and alternative medicine has attracted wide attentions with regards to maintaining women's health. Acupuncture, a crucial component of traditional Chinese medicine, has been used to treat many obstetric and gynecological diseases for thousands of years due to its analgesic and anti-inflammatory effects and its effects on stimulating the sympathetic/parasympathetic nervous system. To fully understand the mechanism through which acupuncture exerts its effects in these diseases would significantly extend the list of available interventions and would allow for more reasonable advice to be given to general practitioners. Therefore, by searching PubMed and CNKI regarding the use of acupuncture in treating obstetric and gynecological diseases, we aimed to summarize the proven evidence of using acupuncture in maintaining women's health by considering both its effectiveness and the underlying mechanisms behind its effects.
Collapse
Affiliation(s)
- Huichao Qin
- Department of Reproductive Medicine, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150036, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiaxing Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
Zhang Q, Zhou M, Huo M, Si Y, Zhang Y, Fang Y, Zhang D. Mechanisms of acupuncture-electroacupuncture on inflammatory pain. Mol Pain 2023; 19:17448069231202882. [PMID: 37678839 PMCID: PMC10515556 DOI: 10.1177/17448069231202882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Acupuncture, as a traditional treatment, has been extensively used in China for thousands of years. According to the World Health Organization (WHO), acupuncture is recommended for the treatment of 77 diseases. And 16 of these diseases are related to inflammatory pain. As a combination of traditional acupuncture and modern electrotherapy, electroacupuncture (EA) has satisfactory analgesic effects on various acute and chronic pain. Because of its good analgesic effects and no side effects, acupuncture has been widely accepted all over the world. Despite the increase in the number of studies, the mechanisms via which acupuncture exerts its analgesic effects have not been conclusively established. A literature review of related research is of great significance to elaborate on its mechanisms and to inform on further research directions. We elucidated on its mechanisms of action on inflammatory pain from two levels: peripheral and central. It includes the mechanisms of acupuncture in the periphery (immune cells and neurons, purinergic pathway, nociceptive ion channel, cannabinoid receptor and endogenous opioid peptide system) and central nervous system (TPRV1, glutamate and its receptors, glial cells, GABAergic interneurons and signaling molecules). In this review, we collected relevant recent studies to systematically explain the mechanisms of acupuncture in treating inflammatory pain, with a view to providing direction for future applications of acupuncture in inflammatory pain and promoting clinical development.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Jin Y, Zhou J, Xu F, Ren Z, Hu J, Zhang C, Ge K, Liu L. Electroacupuncture alleviates the transition from acute to chronic pain through the p38 MAPK/TNF-α signalling pathway in the spinal dorsal horn. Acupunct Med 2021; 39:708-715. [PMID: 34308662 DOI: 10.1177/09645284211020766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hyperalgesic priming (HP) is a model of the transition from acute to chronic pain. Electroacupuncture (EA) could inhibit pain development through the peripheral dorsal root ganglia; however, it is unclear whether it can mitigate the transition from acute to chronic pain by attenuating protein expression in the p38 MAPK (mitogen-activated protein kinase)/tumour necrosis factor alpha (TNF-α) pathway in the spinal dorsal horn. AIMS We aimed to determine whether EA could prevent the transition from acute to chronic pain by affecting the p38 MAPK/TNF-α pathway in the spinal dorsal horn in a rat model established using HP. METHODS We first randomly subdivided 30 male Sprague-Dawley (SD) rats into 5 groups (n = 6 per group): control (N), sham HP (Sham-HP), HP, HP + SB203580p38 MAPK (HP+SB203580), and HP + Lenalidomide (CC-5013) (HP+Lenalidomide). We then randomly subdivided a further 30 male SD rats into 5 groups (n = 6 per group): Sham-HP, HP, sham EA (Sham EA), EA (EA), and EA + U-46619 p38 MAPK agonist (EA+U-46619). We assessed the effects of EA on the mechanical paw withdrawal threshold and p38 MAPK/TNF-α expression in the spinal dorsal horn of rats subjected to chronic inflammatory pain. RESULTS Rats in the EA group had reduced p38 MAPK and TNF-α expression and had significantly reduced mechanical hyperalgesia compared with rats in the other groups. CONCLUSION Our findings indicate that EA could increase the mechanical pain threshold in rats and inhibit the transition from acute pain to chronic pain. This mechanism could involve reduced p38 MAPK/TNF-α expression in the spinal dorsal horn.
Collapse
Affiliation(s)
- Ying Jin
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing City, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, China
| | - Jie Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Fangfang Xu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, China
| | - Zeqin Ren
- Department of Rehabilitation in Traditional Chinese Medicine, The First Affiliated Hospital, Dali University, Dali City, China
| | - Jun Hu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing City, China
| | - Cong Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing City, China
| | - Kaiwen Ge
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing City, China
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing City, China
| |
Collapse
|
4
|
Lyu Z, Guo Y, Gong Y, Fan W, Dou B, Li N, Wang S, Xu Y, Liu Y, Chen B, Guo Y, Xu Z, Lin X. The Role of Neuroglial Crosstalk and Synaptic Plasticity-Mediated Central Sensitization in Acupuncture Analgesia. Neural Plast 2021; 2021:8881557. [PMID: 33531894 PMCID: PMC7834789 DOI: 10.1155/2021/8881557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Although pain is regarded as a global public health priority, analgesic therapy remains a significant challenge. Pain is a hypersensitivity state caused by peripheral and central sensitization, with the latter considered the culprit for chronic pain. This study summarizes the pathogenesis of central sensitization from the perspective of neuroglial crosstalk and synaptic plasticity and underlines the related analgesic mechanisms of acupuncture. Central sensitization is modulated by the neurotransmitters and neuropeptides involved in the ascending excitatory pathway and the descending pain modulatory system. Acupuncture analgesia is associated with downregulating glutamate in the ascending excitatory pathway and upregulating opioids, 𝛾-aminobutyric acid, norepinephrine, and 5-hydroxytryptamine in the descending pain modulatory system. Furthermore, it is increasingly appreciated that neurotransmitters, cytokines, and chemokines are implicated in neuroglial crosstalk and associated plasticity, thus contributing to central sensitization. Acupuncture produces its analgesic action by inhibiting cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α, and upregulating interleukin-10, as well as modulating chemokines and their receptors such as CX3CL1/CX3CR1, CXCL12/CXCR4, CCL2/CCR2, and CXCL1/CXCR2. These factors are regulated by acupuncture through the activation of multiple signaling pathways, including mitogen-activated protein kinase signaling (e.g., the p38, extracellular signal-regulated kinases, and c-Jun-N-terminal kinase pathways), which contribute to the activation of nociceptive neurons. However, the responses of chemokines to acupuncture vary among the types of pain models, acupuncture methods, and stimulation parameters. Thus, the exact mechanisms require future clarification. Taken together, inhibition of central sensitization modulated by neuroglial plasticity is central in acupuncture analgesia, providing a novel insight for the clinical application of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Suzuka University of Medical Science, Suzuka 5100293, Japan
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuan Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Liu X, Wang G, Ai G, Xu X, Niu X, Zhang M. Selective Ablation of Descending Serotonin from the Rostral Ventromedial Medulla Unmasks Its Pro-Nociceptive Role in Chemotherapy-Induced Painful Neuropathy. J Pain Res 2020; 13:3081-3094. [PMID: 33262643 PMCID: PMC7700091 DOI: 10.2147/jpr.s275254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Chemotherapy-induced painful neuropathy (CIPN) is a severe adverse effect of many anti-neoplastic drugs that is difficult to manage. Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter in the rostral ventromedial medulla (RVM), which modulates descending spinal nociceptive transmission. However, the influence of the descending 5-HT from the RVM on CIPN is poorly understood. We investigated the role of 5-HT released from descending RVM neurons in a paclitaxel-induced CIPN rat model. Methods CIPN rat model was produced by intraperitoneally injecting of paclitaxel. Pain behavioral assessments included mechanical allodynia and heat hyperalgesia. 5-HT content was analyzed by high-performance liquid chromatography (HPLC). Western blot and immunohistochemistry were used to determine tryptophan hydroxylase (Tph) and c-Fos expression. The inhibitors p-chlorophenylalanine (PCPA) and SB203580 were administrated by stereotaxical RVM microinjection. Ondansetron was injected through intrathecal catheterization. Results The results demonstrated that Tph, the rate-limiting enzyme in 5-HT synthesis, was significantly upregulated in the RVM, and that spinal 5-HT release was increased in CIPN rats. Intra-RVM microinjection of Tph inhibitor PCPA significantly attenuated mechanical and thermal pain behavior through Tph downregulation and decreased spinal 5-HT. Intra-RVM administration of p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 alleviated paclitaxel-induced pain in a similar manner to PCPA. Intrathecal injection of ondansetron, a 5-HT3 receptor antagonist, partially reversed paclitaxel-induced pain, indicating that 5-HT3 receptors were involved in descending serotoninergic modulation of spinal pain processing. Conclusion The results suggest that activation of the p38 MAPK pathway in the RVM leads to increased RVM Tph expression and descending serotoninergic projection to the spinal dorsal horn and contributes to the persistence of CIPN via spinal 5-HT3 receptors.
Collapse
Affiliation(s)
- Xijiang Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| | - Geyi Ai
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| | - Xiqiang Xu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| | - Xinhuan Niu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, People's Republic of China
| |
Collapse
|
6
|
Lin T, Gargya A, Singh H, Sivanesan E, Gulati A. Mechanism of Peripheral Nerve Stimulation in Chronic Pain. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:S6-S12. [PMID: 32804230 PMCID: PMC7828608 DOI: 10.1093/pm/pnaa164] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION With the advancement of technology, peripheral nerve stimulation (PNS) has been increasingly used to treat various chronic pain conditions. Its origin is based on the gate control theory postulated by Wall and Melzack in 1965. However, the exact mechanism behind PNS' analgesic effect is largely unknown. In this article, we performed a comprehensive literature review to overview the PNS mechanism of action. DESIGN A comprehensive literature review on the mechanism of PNS in chronic pain. METHODS Comprehensive review of the available literature on the mechanism of PNS in chronic pain. Data were derived from database searches of PubMed, Scopus, and the Cochrane Library and manual searches of bibliographies and known primary or review articles. RESULTS Animal, human, and imaging studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and involvement of the cortical and subcortical areas. CONCLUSIONS Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the mechanism of PNS can help guide stimulation approaches and parameters to optimize the use of PNS.
Collapse
Affiliation(s)
- Tiffany Lin
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Akshat Gargya
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Harmandeep Singh
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Eellan Sivanesan
- Department of Anesthesiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
7
|
Xue L, Sun J, Zhu J, Ding Y, Chen S, Ding M, Pei H. The patterns of exercise-induced β-endorphin expression in the central nervous system of rats. Neuropeptides 2020; 82:102048. [PMID: 32446530 DOI: 10.1016/j.npep.2020.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Exercise at different intensities is able to induce different physical and psychological statuses of the subjects. The β-endorphin (β-EP) in central nervous system is thought to play an important role in physical exercise. However, its expression patterns and physiological effects in the central nuclei under different exercise states are not well understood. Five-week old male Sprague-Dawley rats were randomly divided into two groups of 21 each: Control and Exercise. Control rats were sedentary while Exercise rats were arranged to run on a treadmill (5-week adapting or moderate exercise and 2-week high-intensity exercise). Seven rats were taken from each group at day33, day42 and day49 for examination of blood biochemical parameters (lactate, Lac; blood urea nitrogen, BUN; glucose) and for detection of nuclei β-EP level with immunohistochemistry. The results showed that Lac and BUN levels were significant increased after the high intensity exercise. The five-week exercise caused a significantly increased β-EP in caudate putamen (CPu), amygdala, paraventricular thalamic nucleus (PVT), ventromedial hypothalamus nucleus (VMH) and gigantocellular reticular nucleus (Gi). The high intensity exercise induced an elevated β-EP in CPu and nucleus of the solitary tract (Sol), but a decreased β-EP in globus pallidus (GP). Compared with Control, exercise rats showed an elevated β-EP in CPu, PVT, VMH, accumbens nucleus, Gi and Sol, and a decreased β-EP in GP at day49. The β-EP levels in acurate nucleus, periadueductal gray and parabrachial nucleus were not changed at day33, 42 and 49. In conclusion, β-EP levels in different nuclei changed under the moderate and high intensity exercises, which may contribute to modifying exercise-produced psychological and physiological effects.
Collapse
Affiliation(s)
- Liang Xue
- Physical Education Department, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinrui Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuhuai Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong Pei
- Physical Education Department, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Shah MK, Ding Y, Wan J, Janyaro H, Tahir AH, Vodyanoy V, Ding MX. Electroacupuncture intervention of visceral hypersensitivity is involved in PAR-2-activation and CGRP-release in the spinal cord. Sci Rep 2020; 10:11188. [PMID: 32636402 PMCID: PMC7341736 DOI: 10.1038/s41598-020-67702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) relieves visceral hypersensitivity (VH) with underlying inflammatory bowel diseases. However, the mechanism by which EA treats ileitis-induced VH is not clearly known. To assess the effects of EA on ileitis-induced VH and confirm whether EA attenuates VH through spinal PAR-2 activation and CGRP release, goats received an injection of 2,4,6-trinitro-benzenesulfonic-acid (TNBS) solution into the ileal wall. TNBS-injected goats were allocated into VH, Sham acupuncture (Sham-A) and EA groups, while goats treated with saline instead of TNBS solution were used as the control. Goats in EA group received EA at bilateral Hou-San-Li acupoints for 0.5 h at 7 days and thereafter repeated every 3 days for 6 times. Goats in the Sham-A group were inserted with needles for 0.5 h at the aforementioned acupoints without any hand manipulation and electric stimulation. Visceromotor responses to colorectal distension, an indicator of VH, were recorded by electromyography. The terminal ileum and thoracic spinal cord (T11) were sampled for evaluating ileitis at days 7 and 22, and distribution and expression-levels of PAR-2, CGRP and c-Fos on day 22. TNBS-treated-goats exhibited apparent transmural-ileitis on day 7, microscopically low-grade ileitis on day 22 and VH at days 7–22. Goats of Sham-A, VH or EA group showed higher (P < 0.01) VH at days 7–22 than the Control-goats. EA-treated goats exhibited lower (P < 0.01) VH as compared with Sham-A or VH group. Immunoreactive-cells and expression-levels of spinal PAR-2, CGRP and c-Fos in the EA group were greater (P < 0.01) than those in the Control group, but less (P < 0.01) than those in Sham-A and VH groups on day 22. Downregulation of spinal PAR-2 and CGRP levels by EA attenuates the ileitis and resultant VH.
Collapse
Affiliation(s)
- Manoj K Shah
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.,Department of Surgery and Pharmacology, Agriculture and Forestry University, Bharatpur, Nepal
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Adnan Hassan Tahir
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect. Int J Mol Sci 2020; 21:ijms21030968. [PMID: 32024024 PMCID: PMC7037106 DOI: 10.3390/ijms21030968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have verified that electroacupuncture (EA) can relieve neuropathic pain through a variety of mechanisms. Synaptotagmin 1 (Syt-1), a synaptic vesicle protein for regulating exocytosis of neurotransmitters, was found to be affected by EA stimulation. However, the roles of Syt-1 in neuropathic pain and EA-induced analgesic effect remain unclear. Here, the effect of Syt-1 on nociception was assessed through an antibody blockade, siRNA silencing, and lentivirus-mediated overexpression of spinal Syt-1 in rats with spared nerve injury (SNI). EA was used for stimulating bilateral "Sanjinjiao" and "Zusanli" acupoints of the SNI rats to evaluate its effect on nociceptive thresholds and spinal Syt-1 expression. The mechanically and thermally nociceptive behaviors were assessed with paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different temperatures, respectively, at day 0, 7, 8, 14, and 20. Syt-1 mRNA and protein levels were determined with qRT-PCR and Western blot, respectively, and its distribution was observed with the immunohistochemistry method. The results demonstrated Syt-1 antibody blockade and siRNA silencing increased ipsilateral PWTs and PWLs of SNI rats, while Syt-1 overexpression decreased ipsilateral PWTs and PWLs of rats. EA significantly attenuated nociceptive behaviors and down-regulated spinal Syt-1 protein levels (especially in laminae I-II), which were reversed by Syt-1 overexpression. Our findings firstly indicate that Syt-1 is involved in the development of neuropathic pain and that EA attenuates neuropathic pain, probably through suppressing Syt-1 protein expression in the spinal cord.
Collapse
|
10
|
Wan J, Ding Y, Nan S, Zhang Q, Sun J, Suo C, Ding M. Thymosin Beta 4 Is Involved in the Development of Electroacupuncture Tolerance. Front Cell Neurosci 2019; 13:75. [PMID: 30971892 PMCID: PMC6444270 DOI: 10.3389/fncel.2019.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Electroacupuncture (EA) tolerance, a negative therapeutic effect, is a gradual decline in antinociception because of its repeated or prolonged use. This study aims to explore the role of thymosin beta 4 (Tβ4), having neuro-protection properties, in EA tolerance (EAT). Methods: Rats were treated with EA once daily for eight consecutive days to establish EAT, effect of Tβ4 on the development of EAT was determined through microinjection of Tβ4 antibody and siRNA into the cerebroventricle. The mRNA and protein expression profiles of Tβ4, opioid peptides (enkephalin, dynorphin and endorphin), and anti-opioid peptides (cholecystokinin octapeptide, CCK-8 and orphanin FQ, OFQ), and mu opioid receptor (MOR) and CCK B receptor (CCKBR) in the brain areas (hypothalamus, thalamus, cortex, midbrain and medulla) were characterized after Tβ4 siRNA was administered. Results: Tβ4 levels were increased at day 1, 4, and 8 and negatively correlated with the changes of tail flick latency in all areas. Tβ4 antibody and siRNA postponed EAT. Tβ4 siRNA caused decreased Tβ4 levels in all areas, which resulted in increased enkephalin, dynorphin, endorphin and MOR levels in most measured areas during repeated EA, but unchanged OFQ, CCK-8, and CCKBR levels in most measured areas. Tβ4 levels were negatively correlated with enkephalin, dynorphin, endorphin, or MOR levels in all areas except medulla, while positively correlated with OFQ and CCK-8 levels in some areas. Conclusion: These results confirmed Tβ4 facilitates EAT probably through negatively changing endogenous opioid peptides and their receptors and positively influencing anti-opioid peptides in the central nervous system.
Collapse
Affiliation(s)
- Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinrui Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chuanguang Suo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Wan J, Qiu Z, Ding Y, Nan S, Ding M. The Expressing Patterns of Opioid Peptides, Anti-opioid Peptides and Their Receptors in the Central Nervous System Are Involved in Electroacupuncture Tolerance in Goats. Front Neurosci 2018; 12:902. [PMID: 30618545 PMCID: PMC6300483 DOI: 10.3389/fnins.2018.00902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
To investigate dynamic processes of enkephalin (ENK), cholecystokinin octapeptide (CCK-8), orphanin FQ (OFQ) and their receptors (μ opioid receptor, MOR; CCK B type receptor, CCKBR and opioid receptor-like 1 receptor, OPRL1) in the central nerve system (CNS) during electroacupuncture (EA) tolerance, EA of Sixty Hz was used to stimulate goats for 6 h. Pain threshold was measured using potassium iontophoresis. The expression levels of ENK, CCK-8, and OFQ and their receptors were determined with ELISA and qPCR, respectively. The results showed that the change rates of pain threshold in EA-treated goats decreased from 89.9 ± 11.7% at 0.5 h to –11.4 ± 8.9% at 6 h. EA induced the decreased ENK and increased CCK-8 and OFQ in the most measured nuclei. EA caused decreased preproenkephalin mRNAs in ACB, CAU, PVH, and PAG at 4 h, and decreased or unchanged MOR mRNAs at 2–6 h, but increased CCK mRNAs in CAU, PVT, PVH, PAG, and SCD at 4–12 h. Increased prepronociceptin mRNAs and fluctuated CCKBR and OPLR1 mRNAs were found in the most measured nuclei. ENK levels were positively correlated (p < 0.01) with the change rates of pain thresholds in the measured nuclei or areas while CCK-8 levels (or OFQ levels) were negatively correlated (p < 0.01) with the pain thresholds in CAU (or CAU and ACB). These results suggest that the development and recovery of EA tolerance may be associated with the specific expression patterns of opioid peptides, anti-opioid peptides and their receptors in the analgesia-related nuclei or areas.
Collapse
Affiliation(s)
- Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengying Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Chakravarthy KV, Xing F, Bruno K, Kent AR, Raza A, Hurlemann R, Kinfe TM. A Review of Spinal and Peripheral Neuromodulation and Neuroinflammation: Lessons Learned Thus Far and Future Prospects of Biotype Development. Neuromodulation 2018; 22:235-243. [DOI: 10.1111/ner.12859] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Krishnan V. Chakravarthy
- Department of Anesthesiology and Pain MedicineUniversity of California San Diego Health Sciences San Diego CA USA
- VA San Diego Healthcare System San Diego CA USA
| | - Fang Xing
- Department of Anesthesiology and Pain MedicineBrigham and Women's Hospital Boston MA USA
| | - Kelly Bruno
- Department of Anesthesiology and Pain MedicineUniversity of California San Diego Health Sciences San Diego CA USA
- VA San Diego Healthcare System San Diego CA USA
| | | | - Adil Raza
- Neuromodulation Division, Abbott Plano TX USA
| | - Rene Hurlemann
- Department of Psychiatry, Division of Medical Psychology (NEMO Neuromodulation of Emotions)Rheinische Friedrich Wilhelms‐University Hospital Bonn Germany
| | - Thomas M. Kinfe
- Department of Psychiatry, Division of Medical Psychology (NEMO Neuromodulation of Emotions)Rheinische Friedrich Wilhelms‐University Hospital Bonn Germany
| |
Collapse
|