1
|
Chen Y, Bian Y, Wang JW, Gong TT, Ying YM, Ma LF, Shan WG, Xie XQ, Zhan ZJ. Effects of α-Mangostin Derivatives on the Alzheimer's Disease Model of Rats and Their Mechanism: A Combination of Experimental Study and Computational Systems Pharmacology Analysis. ACS OMEGA 2020; 5:9846-9863. [PMID: 32391472 PMCID: PMC7203693 DOI: 10.1021/acsomega.0c00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/16/2020] [Indexed: 06/09/2023]
Abstract
α-Mangostin (α-M) is a natural xanthone from the pericarp of fruit Garcinia mangostana and possesses versatile biological activities. α-M has a therapeutic potential to treat Alzheimer's disease (AD) because of its anti-inflammatory, antioxidative, and neuroprotective activities. However, the use of α-M for AD treatment is limited due to its cytotoxic activities and relatively low potency. Modifications of its chemical structure were needed to reduce its cytotoxicity and improve its therapeutic potential against AD. For this purpose, 16 α-M carbamate derivatives were synthesized. An animal model of AD was established, and the effects of AMG-1 on the spatial learning ability and memory ability were evaluated using behavioral tests. The effect on neuropathology was tested by histopathological evaluation, Nissl staining, and silver staining. Computational systems pharmacology analysis using the chemogenomics knowledgebase was applied for network studies. Compound-target, target-pathway, and target-disease networks were constructed, integrating both in silico analysis and reported experimental data. The results show that AMG-1 can demonstrate its therapeutic effects in a one-molecule, multiple-targets manner to remarkably ameliorate neurological changes and reverse behavioral deficits in AD model rats. The improved cognitive function and alleviated neuronal injury can be observed. The ability of AMG-1 to scavenge β-amyloid in the hippocampus was validated in AD model rats.
Collapse
Affiliation(s)
- Yan Chen
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuemin Bian
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jian-Wei Wang
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ting-Ting Gong
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You-Min Ying
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lie-Feng Ma
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei-Guang Shan
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zha-Jun Zhan
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|