1
|
Ren C, Luo Y, Li X, Ma L, Wang C, Zhi X, Zhao X, Li Y. Pharmacological action of Angelica sinensis polysaccharides: a review. Front Pharmacol 2025; 15:1510976. [PMID: 39872047 PMCID: PMC11770047 DOI: 10.3389/fphar.2024.1510976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/29/2025] Open
Abstract
Angelica sinensis, a traditional Chinese herbal medicine and food, which has a long history of clinical application, is used to improve health conditions and treat various diseases. Angelica sinensis polysaccharides (ASP), the main active component of this traditional Chinese medicine, have multicomponent, multitarget characteristics and very broad pharmacological activities. They play important roles in the treatment of several diseases. In addition, the effect is significant, which may provide a more comprehensive database and theoretical support for applying ASP in the treatment of disease and could be considered a promising candidate for preventing disease. This review summarizes the research progress on the extraction, chemical structure, pharmacological effects, and mechanisms of ASP and its derivatives by reviewing relevant national and international literature and provides comprehensive information and a reliable basis for the exploration of new treatment strategies involving botanical drugs for disease therapy. Literature information was obtained from scientific ethnobotany and ethnomedicine databases (up to September 2024), mainly from the PubMed, Web of Science, and CNKI databases. The literature has explored the extraction, purification, structure, and pharmacological effects of Angelica sinensis polysaccharides. The search keywords for such work included "Angelica sinensis" or "Angelica sinensis polysaccharides," and "pharmacological effects," "extraction" and "structure." Multiple studies have shown that ASP has important pharmacological effects, such as antitumor, anemia-improving, anti-inflammatory, antioxidative, immunomodulatory, hepatoprotective, antifibrotic, hypoglycemic, antiradiation, and antiviral effects, the mechanisms of which appear to involve the regulation of inflammation, oxidative stress, and profibrotic signaling pathways. As a natural polysaccharide, ASP has potential applications as a drug. However, further research should be undertaken to clarify the unconfirmed regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. This review establishes a theoretical foundation for future studies on the structure, mechanism, and clinical use of ASP.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine, Jiangsu Medical College, Yancheng, China
| | - Like Ma
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunling Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
- Cardiovascular clinical medicine center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Shen J, Qin H, Li K, Ding H, Chen X, Peng M, Jiang X, Han Y. The angelica Polysaccharide: a review of phytochemistry, pharmacology and beneficial effects on systemic diseases. Int Immunopharmacol 2024; 133:112025. [PMID: 38677093 DOI: 10.1016/j.intimp.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Huan Qin
- School of Basic Medical Sciences, Qingdao, China
| | - Kangkang Li
- School of Basic Medical Sciences, Qingdao, China
| | - Huiqing Ding
- School of Basic Medical Sciences, Qingdao, China.
| | - Xuehong Chen
- School of Basic Medical Sciences, Qingdao, China.
| | - Meiyu Peng
- School of Basic Medical Sciences, Shandong Second Medical University, China
| | - Xin Jiang
- School of Basic Medical Sciences, Qingdao, China.
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao, China.
| |
Collapse
|
3
|
Effects and Action Mechanism of Huoxue Tongluo Formula on the Formation of Neutrophil Extracellular Traps. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1240967. [PMID: 36034958 PMCID: PMC9410787 DOI: 10.1155/2022/1240967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/03/2022]
Abstract
Excessive infiltration and uncontrolled activation of neutrophil extracellular traps (NETs) are likely to destroy normal tissue architecture and cause uncontrolled inflammation. The present research attempted to screen potential signaling pathways of Huoxue Tongluo Formula (HXTLF) affecting the formation of NETs using network pharmacology technique. Active chemical components of HXTLF and therapeutic targets related to vasculitis were screened, and a chemical components-targets network diagram of HXTLF was constructed by Cytoscape. Finally, the inhibitory effect and mechanism of HXTLF on the formation of NETs were explored in vitro using LPS-induced NETs. Immunofluorescence and Western blot were conducted to determine the protein fluorescence intensity and relative expression. The experimental results illustrated that HXTLF mediated the expression levels of H3Cit and myeloperoxidase (MPO) protein in neutrophils activated by LPS, inhibited NETs formation, and reduced the concentration of interleukin- (IL-) 1β, a proinflammatory factor in cells. Additionally, we activated and inhibited the AKT1 signaling pathway using the corresponding activator and inhibitor to explore the regulatory mechanism of HXTLF on AKT1 and other molecules in the treatment of vasculitis. The results demonstrated that HXTLF could inhibit the phosphorylation of AKT1, IKK, and NF-κB proteins, inhibit NETs formation, and reduce IL-1β concentration, indicating that AKT1 exerts a vital role in the treatment of vasculitis after HXTLF administration. The current study initially revealed the pharmacological mechanism of HXTLF for vasculitis management using network pharmacology techniques and tests in vitro, which is expected to provide important theoretical basis for elucidating the molecular mechanism of HXTLF and promoting its clinical application.
Collapse
|
4
|
Chiu ML, Chiou JS, Chen CJ, Liang WM, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Chou CH, Lin CW, Li TM, Hsu YL, Lin YJ. Effect of Chinese Herbal Medicine Therapy on Risks of Overall, Diabetes-Related, and Cardiovascular Diseases-Related Mortalities in Taiwanese Patients With Hereditary Hemolytic Anemias. Front Pharmacol 2022; 13:891729. [PMID: 35712707 PMCID: PMC9195623 DOI: 10.3389/fphar.2022.891729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary Hemolytic Anemias (HHAs) are a rare but heterogeneous group of erythrocytic diseases, characterized by intrinsic cellular defects due to inherited genetic mutations. We investigated the efficacy of Chinese herbal medicine (CHM) in reducing the overall, diabetes-related, and cardiovascular diseases (CVDs)-related mortalities among patients with HHAs using a nationwide population database. In total, we identified 33,278 patients with HHAs and included 9,222 non-CHM and 9,222 CHM matched pairs after matching. The Cox proportional hazards model was used to compare the risk of mortality between non-CHM and CHM users. The Kaplan-Meier method and log-rank test were used to compare the cumulative incidence mortality between non-CHM and CHM users. The CHM prescription patterns were presented by the association rules and network analyses, respectively. The CHM prescription patterns were presented by the association rules and network analyses, respectively. CHM users showed significant reduced risks for of overall (adjusted hazard ratio [aHR]: 0.67, 95% confidence interval [CI]: 0.61-0.73, p < 0.001), diabetes-related (aHR: 0.57, 95% CI: 0.40-0.82, p < 0.001), and CVDs-related (aHR: 0.59, 95% CI: 0.49-0.72, p < 0.001) mortalities compared with non-CHM users. Two CHM clusters are frequently used to treat Taiwanese patients with HHAs. Cluster 1 is composed of six CHMs: Bei-Mu (BM; Fritillaria cirrhosa D.Don), Gan-Cao (GC; Glycyrrhiza uralensis Fisch.), Hai-Piao-Xiao (HPX; Endoconcha Sepiae), Jie-Geng (JG; Platycodon grandiflorus (Jacq.) A.DC.), Yu-Xing-Cao (YXC; Houttuynia cordata Thunb.), and Xin-Yi-Qing-Fei-Tang (XYQFT). Cluster 2 is composed of two CHMs, Dang-Gui (DG; Angelica sinensis (Oliv.) Diels) and Huang-Qi (HQi; Astragalus membranaceus (Fisch.) Bunge). Further randomized clinical trials are essential to evaluate the safety and effectiveness of above CHM products and to eliminate potential biases in the current retrospective study.
Collapse
Affiliation(s)
- Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan
| | - Jian-Shiun Chiou
- College of Health Care, China Medical University, Taichung, Taiwan.,Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan.,Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan
| | - Chen-Hsing Chou
- College of Health Care, China Medical University, Taichung, Taiwan.,Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Cheng-Wen Lin
- College of Health Care, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Lung Hsu
- Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital,, Taichung, Taiwan
| |
Collapse
|
5
|
Chiu ML, Hsu YL, Chen CJ, Li TM, Chiou JS, Tsai FJ, Lin TH, Liao CC, Huang SM, Chou CH, Liang WM, Lin YJ. Chinese Herbal Medicine Therapy Reduces the Risks of Overall and Anemia-Related Mortalities in Patients With Aplastic Anemia: A Nationwide Retrospective Study in Taiwan. Front Pharmacol 2021; 12:730776. [PMID: 34690769 PMCID: PMC8531749 DOI: 10.3389/fphar.2021.730776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Aplastic Anemia (AA) is a rare but fatal hematologic disease that may occur at any age and especially higher in Asia. We investigated whether Chinese herbal medicine (CHM) is beneficial to AA patients as a complementary therapy using a nationwide population-based database in Taiwan between 2000-2016. Patient survival was estimated by Kaplan‒Meier survival analyses and Cox proportional-hazard model. CHM-users presented lower risks of overall and anemia-related mortalities when compared to non-users. The risk of overall mortality for CHM-users in AA patients was 0.70-fold [adjusted hazard ratio (aHR): 0.70, 95% confidence interval (CI): 0.66-0.74, p < 0.001). The risk of anemia-related mortality was lower in CHM-users when compared to non-users (aHR: 0.46, 95% CI: 0.32-0.67, p < 0.001). The association rule analysis revealed that CHM pairs were Ban-Zhi-Lian (BZL; Scutellaria barbata D. Don)→Bai-Hua-She-She-Cao (BHSSC; Oldenlandia diffusa (Willd.) Roxb.), followed by Dang-Gui (DG; Angelica sinensis (Oliv.) Diels)→Huang-Qi (HQi; Astragalus membranaceus (Fisch.) Bunge), and Xian-He-Cao (XHC; Agrimonia pilosa f. borealis (Kitag.) Chu)→Gui-Pi-Tang (GPT). Network analysis showed that BZL, BHSSC, DG, HQi, XHC, GPT, and Dan-Shen (DanS; Salvia miltiorrhiza var. charbonnelii (H.Lév.) C.Y.Wu) were commonly used CHMs for AA patients. Therefore, further studies for these commonly prescribed herbs are needed in functional investigations in hematopoiesis-stimulating effect and large-scale randomized controlled trials (RCT) in bone marrow failure related diseases.
Collapse
Affiliation(s)
- Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Lung Hsu
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan.,China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Hsing Chou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Bi SJ, Fu RJ, Li JJ, Chen YY, Tang YP. The Bioactivities and Potential Clinical Values of Angelica Sinensis Polysaccharides. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Angelica sinensis Radix (ASR), one of the most commonly used traditional Chinese medicines, contains many chemical components such as polysaccharides, volatile oil, flavonoids, amino acids, and organic acids, among which polysaccharides play an indispensable role in the therapeutic effect of ASR. A. sinensis polysaccharide (ASP) has many biological activities, for instance, hematopoietic, anti-tumor, and liver protection, which are closely related to the treatment of human diseases such as chronic anemia, leukemia, and diabetes. In addition, there are excellent application prospects for drug delivery in nanoparticles. This paper reviews the chemical compositions, extraction methods, biological activity, action mechanism, potential clinical applications, nanoparticles, and research prospect of ASP from 2010 to 2020, so as to provide references for its further development.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
7
|
Study on Absorption Mechanism and Tissue Distribution of Fucoidan. Molecules 2020; 25:molecules25051087. [PMID: 32121122 PMCID: PMC7179197 DOI: 10.3390/molecules25051087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Fucoidan exhibits several pharmacological activities and is characterized by high safety and the absence of toxic side effects. However, the absorption of fucoidan is not well-characterized. In the present study, fucoidan were labeled with fluorescein isothiocyanate (FITC) and their ability to traverse a monolayer of Caco-2 cells was examined. The apparent permeability coefficients (Papp × 10−6) of FITC-labeled fucoidan (FITC-fucoidan) were 26.23, 20.15, 17.93, 16.11 cm/sec, respectively, at the concentration of 10 μg/mL at 0.5, 1, 1.5 and 2 h. The absorption of FITC-fucoidan was suppressed by inhibitors of clathrin-mediated endocytosis, chlorpromazine, NH4Cl, and Dynasore; the inhibition rates were 84.24%, 74.61%, and 63.94%, respectively. This finding suggested that clathrin-mediated endocytosis was involved in fucoidan transport. Finally, tissue distribution of FITC-fucoidan was studied in vivo after injection of 50 mg/kg body weight into the tail vein of mice. The results showed that FITC-fucoidan targeted kidney and liver, reaching concentrations of 1092.31 and 284.27 μg/g respectively after 0.5 h. In summary, the present work identified the mechanism of absorption of fucoidan and documented its tissue distribution, providing a theoretical basis for the future development of fucoidan applications.
Collapse
|
8
|
Wang J, Chen G, Shi T, Wang Y, Guan C. Possible treatment for cutaneous lichen planus: An in vitro anti-inflammatory role of Angelica polysaccharide in human keratinocytes HaCaT. Int J Immunopathol Pharmacol 2019; 33:2058738418821837. [PMID: 30791744 PMCID: PMC6328949 DOI: 10.1177/2058738418821837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cutaneous lichen planus (CLP) is an autoimmune disease. Angelica polysaccharide (AP) has been found to exert immunomodulation activity. In this study, we explored the roles of AP in lipopolysaccharide (LPS)-induced inflammatory injury of human keratinocytes (HaCaT cells), as well as the underlying mechanisms. LPS-induced cell injury was evaluated by alterations of cell viability, apoptosis, and expressions of proteins associated with apoptosis and inflammatory cytokines. Then, the protective effects of AP on LPS-induced cell injury were assessed. The protein expressions of sirtuin 1 (SIRT1) and key kinases in the Nrf2/HO-1 and nuclear factor κB (NF-κB) pathways were measured using western blotting. SIRT1 knockdown and overexpression were used to analyze whether AP affected HaCaT cells through regulating SIRT1. Finally, the possible inhibitory effects of AP on cell injury after LPS treatment were also evaluated. We found that LPS reduced HaCaT cell viability, enhanced apoptosis, and induced release of inflammatory cytokines. AP alleviated LPS-induced HaCaT cell inflammatory injury. The expression of SIRT1 was enhanced after AP treatment. AP activated Nrf2/HO-1 pathway while inhibited NF-κB pathway in HaCaT cells. The protective effects of AP on LPS-induced HaCaT cell injury were reversed by SIRT1 knockdown. Dysregulation of SIRT1 altered the activation of Nrf2/HO-1 and NF-κB pathways in LPS-treated HaCaT cells. Furthermore, AP also exerted inhibitory effects on HaCaT cell injury after LPS stimulation. In conclusion, AP could alleviate LPS-induced inflammatory injury of HaCaT cells through upregulating SIRT1 expression and then activating Nrf2/HO-1 pathway but inactivating NF-κB pathway. This study provided a possible therapeutic strategy for clinical CLP treatments.
Collapse
Affiliation(s)
- Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengfei Guan
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Li R, Yin F, Guo Y, Ruan Q, Zhu Q. RETRACTED: Angelica polysaccharide protects PC-12 cells from lipopolysaccharide-induced injury via down-regulating microRNA-223. Biomed Pharmacother 2018; 108:1320-1327. [PMID: 30372834 DOI: 10.1016/j.biopha.2018.09.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concerns were initially raised regarding the Western Blots from Figures 1C, 1G, 2B, 2D, 4D, 4F, 5 (left panel), 6C and 6E. Given also the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. The authors have not provided raw data of sufficient quality and detail to support the authors’™ claim and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fei Yin
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yingying Guo
- Department of Blood Transfusion, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
10
|
Hepcidin Therapeutics. Pharmaceuticals (Basel) 2018; 11:ph11040127. [PMID: 30469435 PMCID: PMC6316648 DOI: 10.3390/ph11040127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hepcidin is a key hormonal regulator of systemic iron homeostasis and its expression is induced by iron or inflammatory stimuli. Genetic defects in iron signaling to hepcidin lead to “hepcidinopathies” ranging from hereditary hemochromatosis to iron-refractory iron deficiency anemia, which are disorders caused by hepcidin deficiency or excess, respectively. Moreover, dysregulation of hepcidin is a pathogenic cofactor in iron-loading anemias with ineffective erythropoiesis and in anemia of inflammation. Experiments with preclinical animal models provided evidence that restoration of appropriate hepcidin levels can be used for the treatment of these conditions. This fueled the rapidly growing field of hepcidin therapeutics. Several hepcidin agonists and antagonists, as well as inducers and inhibitors of hepcidin expression have been identified to date. Some of them were further developed and are currently being evaluated in clinical trials. This review summarizes the state of the art.
Collapse
|