1
|
Shah M, Suresh S, Paddick J, Mellow ML, Rees A, Berryman C, Stanton TR, Smith AE. Age-related changes in responsiveness to non-invasive brain stimulation neuroplasticity paradigms: A systematic review with meta-analysis. Clin Neurophysiol 2024; 162:53-67. [PMID: 38579515 DOI: 10.1016/j.clinph.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES We aimed to summarise and critically appraise the available evidence for the effect of age on responsiveness to non-invasive brain stimulation (NBS) paradigms delivered to the primary motor cortex. METHODS Four databases (Medline, Embase, PsycINFO and Scopus) were searched from inception to February 7, 2023. Studies investigating age group comparisons and associations between age and neuroplasticity induction from NBS paradigms were included. Only studies delivering neuroplasticity paradigms to the primary motor cortex and responses measured via motor-evoked potentials (MEPs) in healthy adults were considered. RESULTS 39 studies, encompassing 40 experiments and eight NBS paradigms were included: paired associative stimulation (PAS; n = 12), repetitive transcranial magnetic stimulation (rTMS; n = 2), intermittent theta burst stimulation (iTBS; n = 8), continuous theta burst stimulation (cTBS; n = 7), transcranial direct and alternating current stimulation ((tDCS; n = 7; tACS; n = 2)), quadripulse stimulation (QPS; n = 1) and i-wave periodic transcranial magnetic stimulation (iTMS; n = 1). Pooled findings from PAS paradigms suggested older adults have reduced post-paradigm responses, although there was considerable heterogeneity. Mixed results were observed across all other NBS paradigms and post-paradigm timepoints. CONCLUSIONS/SIGNIFICANCE Whilst age-dependent reduction in corticospinal excitability is possible, there is extensive inter- and intra-individual variability both within and between studies, making it difficult to draw meaningful conclusions from pooled analyses.
Collapse
Affiliation(s)
- Mahima Shah
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Suraj Suresh
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Johanna Paddick
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI)
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Amy Rees
- Discipline of Physiology, School of Biomedicine. The University of Adelaide, Adelaide 5000, Australia
| | - Carolyn Berryman
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Tce, Adelaide 5000, Australia; IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI); IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
2
|
Schapira G, Chang J, Kim Y, Ngo JP, Deblieck C, Bianco V, Edwards DJ, Dobkin BH, Wu AD, Iacoboni M. Intraclass Correlation in Paired Associative Stimulation and Metaplasticity. NEUROSCI 2022; 3:589-603. [PMID: 39483766 PMCID: PMC11523748 DOI: 10.3390/neurosci3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2024] Open
Abstract
Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility. We measured intraclass correlation coefficients (ICCs)-a widely used tool to assess whether groups of measurements resemble each other-in two PAS studies on healthy volunteers. The first study included five PAS sessions recording 10 MEPS every 10 min for an hour post-PAS. The second study included two PAS sessions recording 50 MEPS at 20 and 50 min post-PAS, based on analyses from the first study. In both studies PAS sessions were spaced one week apart. Within sessions ICC was fair to excellent for both studies, yet between sessions ICC was poor for both studies. We suggest that long term meta-plasticity effects (longer than one week) may interfere with between sessions reproducibility.
Collapse
Affiliation(s)
- Giuditta Schapira
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Chang
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jacqueline P. Ngo
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, 2000 Antwerpen, Belgium
| | - Valentina Bianco
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00185 Rome, Italy
| | - Dylan J. Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Bruce H. Dobkin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Kang N, Ko DK, Cauraugh JH. Bimanual motor impairments in older adults: an updated systematic review and meta-analysis. EXCLI JOURNAL 2022; 21:1068-1083. [PMID: 36381648 PMCID: PMC9650695 DOI: 10.17179/excli2022-5236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
This updated systematic review and meta-analysis further examined potential effects of aging on bimanual movements. Forty-seven qualified studies that compared bimanual motor performances between elderly and younger adults were included in this meta-analysis. Moderator variable analyses additionally determined whether altered bimanual motor performances in older adults were different based on the task types (i.e., symmetry vs. asymmetry vs. complex) or outcome measures (i.e., accuracy vs. variability vs. movement time). The random effects model meta-analysis on 80 comparisons from 47 included studies revealed significant negative overall effects indicating more bimanual movement impairments in the elderly adults than younger adults. Moderator variable analyses found that older adults showed more deficits in asymmetrical bimanual movement tasks than symmetrical and complex tasks, and the bimanual movement impairments in the elderly adults included less accurate, more variable, and greater movement execution time than younger adults. These findings suggest that rehabilitation programs for improving motor actions in older adults are necessary to focus on functional recovery of interlimb motor control including advanced motor performances as well coordination.
Collapse
Affiliation(s)
- Nyeonju Kang
- Division of Sport Science, Health Promotion Center, & Sport Science Institute, Incheon National University, Incheon, South Korea,Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Do Kyung Ko
- Division of Sport Science, Health Promotion Center, & Sport Science Institute, Incheon National University, Incheon, South Korea,Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - James H. Cauraugh
- Motor Behavior Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA,*To whom correspondence should be addressed: James H. Cauraugh, Motor Behavior Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA; Phone: 352-294-1623, Fax: 352-392-0316, E-mail:
| |
Collapse
|
4
|
Howells FM, Hsieh JH, Temmingh HS, Baldwin DS, Stein DJ. Capacity for cortical excitation is reduced in psychotic disorders: An investigation of the TMS-EMG cortical silent period. Schizophr Res 2022; 240:73-77. [PMID: 34968895 DOI: 10.1016/j.schres.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, South Africa.
| | - Jennifer H Hsieh
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Valkenberg Hospital, Cape Town, Western Cape Province, South Africa
| | - David S Baldwin
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, South Africa; SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, South Africa
| |
Collapse
|
5
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
6
|
Tang X, Huang P, Li Y, Lan J, Yang Z, Xu M, Yi W, Lu L, Wang L, Xu N. Age-Related Changes in the Plasticity of Neural Networks Assessed by Transcranial Magnetic Stimulation With Electromyography: A Systematic Review and Meta-Analysis. Front Cell Neurosci 2019; 13:469. [PMID: 31708744 PMCID: PMC6822534 DOI: 10.3389/fncel.2019.00469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
Objective: The excitability of cerebral cortical cells, neural pathway, and neural networks, as well as their plasticity, are key to our exploration of age-related changes in brain structure and function. The combination of transcranial magnetic stimulation (TMS) with electromyography (EMG) can be applied to the primary motor cortex; it activates the underlying neural group and passes through the corticospinal pathway, which can be quantified using EMG. This meta-analysis aimed to analyze changes in cortical excitability and plasticity in healthy elderly individuals vs. young individuals through TMS-EMG. Methods: The Cochrane Library, Medline, and EMBASE databases were searched to identify eligible trials published from database inception to June 3, 2019. The Cochrane Risk of Bias Tool and improved Jadad scale were used to assess the methodological quality. A meta-analysis of the comparative effects was conducted using the Review Manager 5.3 software and Stata 14.0 software. Results: The pooled results revealed that the resting motor threshold values in the elderly group were markedly higher than those reported in the young group (mean difference [MD]: −2.35; 95% confidence interval [CI]: −3.69 to −1.02]; p < (0.00001). The motor evoked potential amplitude significantly reduced in the elderly group vs. the young group (MD: 0.18; 95% CI: 0.09–0.27; p < 0.0001). Moreover, there was significantly longer motor evoked potential latency in the elderly group (MD: −1.07; 95% CI: −1.77 to −0.37]; p =(0.003). There was no significant difference observed in the active motor threshold between the elderly and young groups (MD: −1.52; 95% CI: −3.47 to −0.42]; p =(0.13). Meanwhile, only two studies reported the absence of adverse events. Conclusion: We found that the excitability of the cerebral cortex declined in elderly individuals vs. young individuals. The findings of the present analysis should be considered with caution owing to the methodological limitations in the included trials. Additional high-quality studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Xiaorong Tang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peidong Huang
- Acupuncture and Massage Rehabilitation Institute, Yunnan University of Chinese Medicine, Kunming, China
| | - Yitong Li
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanchao Lan
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhonghua Yang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mindong Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- Clinical Research Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Wang
- Clinical Research Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Minkova L, Peter J, Abdulkadir A, Schumacher LV, Kaller CP, Nissen C, Klöppel S, Lahr J. Determinants of Inter-Individual Variability in Corticomotor Excitability Induced by Paired Associative Stimulation. Front Neurosci 2019; 13:841. [PMID: 31474818 PMCID: PMC6702284 DOI: 10.3389/fnins.2019.00841] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a well-established tool in probing cortical plasticity in vivo. Changes in corticomotor excitability can be induced using paired associative stimulation (PAS) protocol, in which TMS over the primary motor cortex is conditioned with an electrical peripheral nerve stimulation of the contralateral hand. PAS with an inter-stimulus interval of 25 ms induces long-term potentiation (LTP)-like effects in cortical excitability. However, the response to a PAS protocol tends to vary substantially across individuals. In this study, we used univariate and multivariate data-driven methods to investigate various previously proposed determinants of inter-individual variability in PAS efficacy, such as demographic, cognitive, clinical, neurophysiological, and neuroimaging measures. Forty-one right-handed participants, comprising 22 patients with amnestic mild cognitive impairment (MCI) and 19 healthy controls (HC), underwent the PAS protocol. Prior to stimulation, demographic, genetic, clinical, as well as structural and resting-state functional MRI data were acquired. The two groups did not differ in any of the variables, except by global cognitive status. Univariate analysis showed that only 61% of all participants were classified as PAS responders, irrespective of group membership. Higher PAS response was associated with lower TMS intensity and with higher resting-state connectivity within the sensorimotor network, but only in responders, as opposed to non-responders. We also found an overall positive correlation between PAS response and structural connectivity within the corticospinal tract, which did not differ between groups. A multivariate random forest (RF) model identified age, gender, education, IQ, global cognitive status, sleep quality, alertness, TMS intensity, genetic factors, and neuroimaging measures (functional and structural connectivity, gray matter (GM) volume, and cortical thickness as poor predictors of PAS response. The model resulted in low accuracy of the RF classifier (58%; 95% CI: 42 - 74%), with a higher relative importance of brain connectivity measures compared to the other variables. We conclude that PAS variability in our sample was not well explained by factors known to influence PAS efficacy, emphasizing the need for future replication studies.
Collapse
Affiliation(s)
- Lora Minkova
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ahmed Abdulkadir
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lena V Schumacher
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neuroradiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Psychiatry and Psychotherapy, University Psychiatric Services, University of Bern, Bern, Switzerland.,Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Center for Geriatrics and Gerontology Freiburg, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacob Lahr
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Carson RG, Rankin ML. Shaping the Effects of Associative Brain Stimulation by Contractions of the Opposite Limb. Front Psychol 2018; 9:2249. [PMID: 30510533 PMCID: PMC6252341 DOI: 10.3389/fpsyg.2018.02249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
There has been an explosion of interest in methods that may promote neural plasticity by indirectly stimulating tissue in damaged brains using transient magnetic fields or weak electrical currents. A major limitation of these approaches is that the induced variations in brain activity tend to be diffuse. Thus far it has proved extremely difficult to target pathways from the brain to specific muscles. This is a particular challenge for applications in rehabilitation. Stroke survivors often exhibit abnormal patterns of muscle activation, including diminished specificity and high levels of co-contraction. For the clinical relevance of brain stimulation to be enhanced, it is desirable that the effects can be restricted to pathways controlling muscles that are the specific targets of movement therapy. We have demonstrated previously that increases in the excitability of corticospinal projections to forearm muscles generated by paired associative stimulation (PAS), are modulated by contractions ipsilateral to the site of the cortical stimulus. The current aim was to determine whether in chronic stroke survivors, simultaneous contractions performed by the non-paretic limb increase the muscle specificity of changes in the excitability of projections to the impaired limb induced by PAS. Ten chronic stroke survivors, 13 age-equivalent and 27 younger healthy controls, completed two separate sessions/conditions. In one (PAS+CONT), isometric wrist flexion contractions of the non-impaired limb were made simultaneously with PAS. In the other (PAS), associative stimulation only was applied. In all groups, PAS alone gave rise to large increases in the excitability of projections to a wrist extensor muscle (extensor carpi radialis – ECR) that was not the target of stimulation. In marked contrast, for the stroke survivors, following combined PAS and flexion contractions of the non-impaired limb, there was no corresponding elevation in the excitability of corticospinal projections to the ECR of the paretic limb. A similar effect was present for the healthy young adults, but not expressed clearly for the age-equivalent controls. The implications of these findings with respect to the clinical deployment of non-invasive brain stimulation in movement rehabilitation are discussed.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland.,School of Psychology, Queen's University Belfast, Belfast, United Kingdom
| | - Michelle L Rankin
- School of Psychology, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Schättin A, Gennaro F, Egloff M, Vogt S, de Bruin ED. Physical Activity, Nutrition, Cognition, Neurophysiology, and Short-Time Synaptic Plasticity in Healthy Older Adults: A Cross-Sectional Study. Front Aging Neurosci 2018; 10:242. [PMID: 30214406 PMCID: PMC6125692 DOI: 10.3389/fnagi.2018.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
The aging brain undergoes remodeling processes because of biological and environmental factors. To counteract brain aging, neuronal plasticity should be preserved. The aim of this study was to test if the capacity of generating short-time synaptic plasticity in older adults may be related to either physical activity, nutritional status, cognition, or neurophysiological activity. Thirty-six participants (mean age 73.3 ± 5.9 years) received transcranial magnetic stimulation in combination with peripheral nerve stimulation to experimentally induce short-time synaptic plasticity by paired associative stimulation (PAS). Adaptations in neuronal excitability were assessed by motor-evoked potential (MEP) in the right m. tibialis anterior before and after PAS. The Physical Activity Questionnaire 50+ and the StepWatchTM captured physical activity levels. Nutritional status was assessed by the Mini Nutritional Assessment. Cognition was assessed by reaction time for a divided attention test and with the Montreal Cognitive Assessment. Neurophysiological activity was assessed by electroencephalography during the divided attention test. MEPs of the highest stimulation intensity resulted significantly different comparing before, 5 min, or 30 min after PAS (p < 0.05). Data-driven automatic hierarchical classification of the individual recruitment curve slopes over the three-time points indicated four different response types, however, response groups did not significantly differ based on physical activity, nutritional status, cognition, or neurophysiological activity. In a second-level analysis, participants having an increased slope showed a significant higher energy expenditure (z = -2.165, p = 0.030, r = 0.36) and revealed a significant higher power activity in the alpha frequency band (z = -2.008, p = 0.046, r = 0.37) at the prefrontal-located EEG electrodes, compared to the participants having a decreased slope. This study hints toward older adults differing in their neuronal excitability which is strongly associated to their short-time synaptic plasticity levels. Furthermore, a physically active lifestyle and higher EEG power in the alpha frequency band seem to be connected to the capacity of generating long-term potentiation-like synaptic plasticity in older adults. Future studies should consider more sensitive assessments and bigger sample sizes to get a broad scope of the older adults' population.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Martin Egloff
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Simon Vogt
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|