1
|
Lynch HN, Kozal JS, Vincent MJ, Freid RD, Beckett EM, Brown S, Mathis C, Schoeny RS, Maier A. Systematic review of the human health hazards of propylene dichloride. Regul Toxicol Pharmacol 2023; 144:105468. [PMID: 37562533 DOI: 10.1016/j.yrtph.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Propylene dichloride (PDC) is a chlorinated substance used primarily as an intermediate in basic organic chemical manufacturing. The United States Environmental Protection Agency (EPA) is currently evaluating PDC as a high-priority substance under the Toxic Substances Control Act (TSCA). We conducted a systematic review of the non-cancer and cancer hazards of PDC using the EPA TSCA and Integrated Risk Information System (IRIS) frameworks. We identified 12 epidemiological, 16 toxicokinetic, 34 experimental animal, and 49 mechanistic studies. Point-of-contact respiratory effects are the most sensitive non-cancer effects after inhalation exposure, and PDC is neither a reproductive nor a developmental toxicant. PDC is not mutagenic in vivo, and while in vitro evidence is mixed, DNA strand breaks consistently occur. Nasal tumors in rats and lung tumors in mice occurred after lifetime high-level inhalation exposure. Cholangiocarcinoma (CCA) was observed in Japanese print workers exposed to high concentrations of PDC. However, co-exposures, as well as liver parasites, hepatitis, and other risk factors, may also have contributed. The cancer mode of action (MOA) analysis revealed that PDC may act through multiple biological pathways occurring sequentially and/or simultaneously, although chronic tissue damage and inflammation likely dominate. Critically, health benchmarks protective of non-cancer effects are expected to protect against cancer in humans.
Collapse
|
2
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
3
|
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022; 27:molecules27165252. [PMID: 36014491 PMCID: PMC9412641 DOI: 10.3390/molecules27165252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of many anticancer drugs depends on the creation of specific metabolites that may alter their therapeutic or toxic properties. One significant route of biotransformation is a conjugation of electrophilic compounds with reduced glutathione, which can be non-enzymatic and/or catalyzed by glutathione-dependent enzymes. Glutathione usually combines with anticancer drugs and/or their metabolites to form more polar and water-soluble glutathione S-conjugates, readily excreted outside the body. In this regard, glutathione plays a role in detoxification, decreasing the likelihood that a xenobiotic will react with cellular targets. However, some drugs once transformed into thioethers are more active or toxic than the parent compound. Thus, glutathione conjugation may also lead to pharmacological or toxicological effects through bioactivation reactions. My purpose here is to provide a broad overview of the mechanisms of glutathione-mediated conjugation of anticancer drugs. Additionally, I discuss the biological importance of glutathione conjugation to anticancer drug detoxification and bioactivation pathways. I also consider the potential role of glutathione in the metabolism of unsymmetrical bisacridines, a novel prosperous class of anticancer compounds developed in our laboratory. The knowledge on glutathione-mediated conjugation of anticancer drugs presented in this review may be noteworthy for improving cancer therapy and preventing drug resistance in cancers.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Seeherunwong A, Chaiear N, Khuntikeo N, Ekpanyaskul C. The Proportion of Occupationally Related Cholangiocarcinoma: A Tertiary Hospital Study in Northeastern Thailand. Cancers (Basel) 2022; 14:cancers14102386. [PMID: 35625989 PMCID: PMC9139931 DOI: 10.3390/cancers14102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Northeastern Thailand has the world’s highest incidence rate of cholangiocarcinoma (CCA), whereas a consequence, approximately 14,000 patients die annually. In most cases, the causal factors are identified, but, for some, they remain unknown. Legally imported industrial chemicals such as 1,2-dichloropropane (1,2-DCP), dichloromethane (DCM), and asbestos fibers are defined as occupational causes of CCA. An investigation into these vis-à-vis the diagnosis of occupationally related CCA in Thailand has not been conducted, but is important for understanding the potential magnitude of the problem. The current study found that the proportion of occupationally related CCA was approximately 5.5%, as well as a lower proportion of occupational history taken by treating physicians. Improving physician skills and developing an assistive tool for exploring occupational history might improve the documentation of work-related conditions. Abstract Northeastern Thailand registers the highest worldwide incidence of cholangiocarcinoma (CCA). Most of the cases are associated with liver flukes, while unknown causes comprise approximately 10–30% of cases, and these could be due to occupational exposures. Our aim was to determine the magnitude of occupational causes of CCA in a tertiary hospital in northeastern Thailand. We conducted a cross-sectional study with a sample of 220 patients between March and November 2021. Descriptive statistics were used to analyze the findings. Clinical information and telephone interviews were used to explore significant occupational histories. An occupational consensus meeting was held with two occupational physicians, an industrial hygienist, and a hepatobiliary surgeon to decide on the final diagnosis. The response rate was 90.9% (200/220). Based on the medical records and telephone interviews, researchers found that 11 participants had significant exposure. After occupational consensus, it was agreed that the eleven had possible occupational causes, 5.5% (11/200)–54.5% (6/11) being due to asbestos fibers, 45.5% (5/11) due to dichloromethane, and 9.1% (1/11) due to 1,2-dichloropropane. Only 4% (8/200) had occupational histories collected by their treating physicians. Taken together, occupationally related CCA appears to have been underestimated, so improving occupational history taking is needed to properly identify and classify work-related CCA—both for patient treatment and occupational hazard prevention.
Collapse
Affiliation(s)
- Anantapat Seeherunwong
- Department of Community, Family and Occupational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Naesinee Chaiear
- Department of Community, Family and Occupational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +66-43363587
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Cholangiocarcinoma Screening and Care Program (CASCAP), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchai Ekpanyaskul
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand;
| |
Collapse
|
5
|
Ekuban A, Zong C, Ekuban FA, Kimura Y, Takizawa R, Morikawa K, Kinoshita K, Ichihara S, Ohsako S, Ichihara G. Role of Macrophages in Cytotoxicity, Reactive Oxygen Species Production and DNA Damage in 1,2-Dichloropropane-Exposed Human Cholangiocytes In Vitro. TOXICS 2021; 9:toxics9060128. [PMID: 34205922 PMCID: PMC8228395 DOI: 10.3390/toxics9060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
1,2-Dichloropropane (1,2-DCP), a synthetic chlorinated organic compound, was extensively used in the past in offset color proof-printing. In 2014, the International Agency for Research on Cancer (IARC) reclassified 1,2-DCP from its initial Group 3 to Group 1. Prior to the reclassification, cholangiocarcinoma was diagnosed in a group of workers exposed to 1,2 -DCP in an offset color proof-printing company in Japan. In comparison with other forms of cholangiocarcinoma, 1,2-DCP-induced cholangiocarcinoma was of early onset and accompanied by extensive pre-cancerous lesions in large bile ducts. However, the mechanism of 1,2-DCP-induced cholangiocarcinoma is poorly understood. Inflammatory cell proliferation was observed in various sites of the bile duct in the noncancerous hepatic tissues of the 1,2-DCP-induced cholangiocarcinoma. The aim of this study was to enhance our understanding of the mechanism of 1,2-DCP-related cholangiocarcinogenesis. We applied an in vitro system to investigate the effects of 1,2-DCP, using MMNK-1 cholangiocytes cultured alone or with THP-1 macrophages. The cultured cells were exposed to 1,2-DCP at 0, 0.1, 0.2, 0.4, and 0.8 mM for 24 h, and then assessed for cell proliferation, cell cytotoxicity, DNA damage, and ROS production. Exposure to 1,2-DCP increased proliferation of MMNK-1 cholangiocytes cultured alone, but not those cultured with macrophages. 1,2-DCP also increased LDH cytotoxicity, DNA damage, and ROS production in MMNK-1 cholangiocytes co-cultured with macrophages but not those cultured alone. 1,2-DCP increased TNFα and IL-1β protein expression in macrophages. The results highlight the role of macrophages in enhancing the effects of 1,2-DCP on cytotoxicity, ROS production, and DNA damage in cholangiocytes.
Collapse
Affiliation(s)
- Abigail Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Yusuke Kimura
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Ryoya Takizawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan;
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan;
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan;
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan;
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
- Correspondence:
| |
Collapse
|