1
|
Khatlani T, Pradhan S, Langlois K, Subramanyam D, Rumbaut RE, Vijayan KV. Opposing Roles for the α Isoform of the Catalytic Subunit of Protein Phosphatase 1 in Inside-Out and Outside-In Integrin Signaling in Murine Platelets. Cells 2023; 12:2424. [PMID: 37887268 PMCID: PMC10605409 DOI: 10.3390/cells12202424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet activation during hemostasis and thrombosis is facilitated by agonist-induced inside-out and integrin αIIbβ3-initiated outside-in signaling via protein kinases and phosphatases. Pharmacological inhibitor studies suggest that the serine/threonine protein phosphatase 1 (PP1) promotes platelet activation. However, since phosphatase inhibitors block all the isoforms of the catalytic subunit of PP1 (PP1c), the role of specific PP1c isoform in platelet signaling remains unclear. Here, we employed a platelet-specific PP1cα-/- mice to explore the contribution of a major PP1 isoform in platelet functions. Loss of PP1cα moderately decreased activation of integrin αIIbβ3, binding of soluble fibrinogen, and aggregation to low-dose thrombin, ADP, and collagen. In contrast, PP1cα-/- platelets displayed increased adhesion to immobilized fibrinogen, fibrin clot retraction, and thrombus formation on immobilized collagen. Mechanistically, post-fibrinogen engagement potentiated p38 mitogen-activated protein kinase (MAPK) activation in PP1cα-/- platelets and the p38 inhibitor blocked the increased integrin-mediated outside-in signaling function. Tail bleeding time and light-dye injury-induced microvascular thrombosis in the cremaster venules and arterioles were not altered in PP1cα-/- mice. Thus, PP1cα displays pleiotropic signaling in platelets as it amplifies agonist-induced signaling and attenuates integrin-mediated signaling with no impact on hemostasis and thrombosis.
Collapse
Affiliation(s)
- Tanvir Khatlani
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Subhashree Pradhan
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Kimberly Langlois
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Pulmonary Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deepika Subramanyam
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Rolando E. Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Pulmonary Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - K. Vinod Vijayan
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| |
Collapse
|
2
|
Effect of Yiqi Huoxue Granules on Platelet Activation Induced by Thrombin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6622848. [PMID: 34335832 PMCID: PMC8313338 DOI: 10.1155/2021/6622848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/10/2021] [Indexed: 11/18/2022]
Abstract
Objective To study the effects of Yiqi Huoxue (YQHX) granules on platelet activation and aggregation induced by thrombin. Methods The effect of YQHX on platelet aggregation rate was detected by platelet aggregation instrument; the effect of YQHX on thrombosis time was observed by the mouse mesentery thrombosis model. DAMI cells were induced to transform into platelet-like granules using PMA, and the effects of SCH (PAR-1 inhibitor) on thrombin-induced changes in platelet intracellular calcium concentration, PAR-1 protein expression, and phosphorylation of MAPK were examined. Results Compared with the control group, the platelet aggregation rate, PAR-1 protein expression, phosphorylation of ERK1/2, and p38 protein in the YQHX group decreased (P < 0.05), and there was no significant difference between the YQHX + SCH group and YQHX group (P > 0.05). Conclusion YQHX suppresses the platelet activation induced by thrombin by inhibiting PAR-1 expression.
Collapse
|
3
|
Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8:107334-107345. [PMID: 29291033 PMCID: PMC5739818 DOI: 10.18632/oncotarget.21015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiahui Yu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shangjin Song
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|