1
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives. Diagnostics (Basel) 2022; 12:2708. [PMID: 36359550 PMCID: PMC9689408 DOI: 10.3390/diagnostics12112708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
According to the World Health Organization (WHO), Parkinson's disease (PD) is a neurodegenerative disease of the brain that causes motor symptoms including slower movement, rigidity, tremor, and imbalance in addition to other problems like Alzheimer's disease (AD), psychiatric problems, insomnia, anxiety, and sensory abnormalities. Techniques including artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been established for the classification of PD and normal controls (NC) with similar therapeutic appearances in order to address these problems and improve the diagnostic procedure for PD. In this article, we examine a literature survey of research articles published up to September 2022 in order to present an in-depth analysis of the use of datasets, various modalities, experimental setups, and architectures that have been applied in the diagnosis of subjective disease. This analysis includes a total of 217 research publications with a list of the various datasets, methodologies, and features. These findings suggest that ML/DL methods and novel biomarkers hold promising results for application in medical decision-making, leading to a more methodical and thorough detection of PD. Finally, we highlight the challenges and provide appropriate recommendations on selecting approaches that might be used for subgrouping and connection analysis with structural magnetic resonance imaging (sMRI), DaTSCAN, and single-photon emission computerized tomography (SPECT) data for future Parkinson's research.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, Uttarakhand, India
- Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| |
Collapse
|
2
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N, Twala B. Imperative Role of Machine Learning Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations. Diagnostics (Basel) 2022; 12:diagnostics12082003. [PMID: 36010353 PMCID: PMC9407112 DOI: 10.3390/diagnostics12082003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that affects the neural, behavioral, and physiological systems of the brain. This disease is also known as tremor. The common symptoms of this disease are a slowness of movement known as ‘bradykinesia’, loss of automatic movements, speech/writing changes, and difficulty with walking at early stages. To solve these issues and to enhance the diagnostic process of PD, machine learning (ML) algorithms have been implemented for the categorization of subjective disease and healthy controls (HC) with comparable medical appearances. To provide a far-reaching outline of data modalities and artificial intelligence techniques that have been utilized in the analysis and diagnosis of PD, we conducted a literature analysis of research papers published up until 2022. A total of 112 research papers were included in this study, with an examination of their targets, data sources and different types of datasets, ML algorithms, and associated outcomes. The results showed that ML approaches and new biomarkers have a lot of promise for being used in clinical decision-making, resulting in a more systematic and informed diagnosis of PD. In this study, some major challenges were addressed along with a future recommendation.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Uttarakhand Technical University (UTU), Dehradun 248007, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| | - Bhekisipho Twala
- Digital Transformation Portfolio, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
- Correspondence:
| |
Collapse
|
3
|
Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. J Biomed Inform 2022; 127:104030. [PMID: 35183766 DOI: 10.1016/j.jbi.2022.104030] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & OBJECTIVE With populations aging, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimer's disease (AD) pathology and there is a 10-20 year 'pre-clinical' period before significant cognitive decline occurs. We urgently need, cost effective, objective biomarkers to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to the pre-clinical phase. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. This scoping review aims to summarise the current capabilities of AI-aided digital biomarkers to aid in early detection of dementia, and also discusses potential future research directions. METHODS & MATERIALS In this scoping review, we used PubMed and IEEE Xplore to identify relevant papers. The resulting records were further filtered to retrieve articles published within five years and written in English. Duplicates were removed, titles and abstracts were screened and full texts were reviewed. RESULTS After an initial yield of 1,463 records, 1,444 records were screened after removal of duplication. A further 771 records were excluded after screening titles and abstracts, and 496 were excluded after full text review. The final yield was 177 studies. Records were grouped into different artificial intelligence based tests: (a) computerized cognitive tests (b) movement tests (c) speech, conversion, and language tests and (d) computer-assisted interpretation of brain scans. CONCLUSIONS In general, AI techniques enhance the performance of dementia screening tests because more features can be retrieved from a single test, there are less errors due to subjective judgements and AI shifts the automation of dementia screening to a higher level. Compared with traditional cognitive tests, AI-based computerized cognitive tests improve the discrimination sensitivity by around 4% and specificity by around 3%. In terms of speech, conversation and language tests, combining both acoustic features and linguistic features achieve the best result with accuracy around 94%. Deep learning techniques applied in brain scan analysis achieves around 92% accuracy. Movement tests and setting smart environments to capture daily life behaviours are two potential future directions that may help discriminate dementia from normal aging. AI-based smart environments and multi-modal tests are promising future directions to improve detection of dementia in the earliest stages.
Collapse
Affiliation(s)
- Renjie Li
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Xinyi Wang
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia.
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| | - Saurabh Garg
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Quan Bai
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| |
Collapse
|
4
|
GÜL KOÇ G, DAĞSUYU C, KOKANGÜL A, KOÇ F. Evaluation of ALSFRS-R Scale with Fuzzy Method in Amyotrophic Lateral Sclerosis. Noro Psikiyatr Ars 2022; 59:54-62. [PMID: 35317505 PMCID: PMC8895801 DOI: 10.29399/npa.27449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/29/2020] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a disease with high morbidity and mortality that adversely affects the activities of daily living. Disease progression in ALS is characterized by loss of function in bulbar, motor, and respiratory parameters. The revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R), which consists of 12 criteria, is used to determine disease effects on each of these functions. While each criterion is equally important when calculating the total ALSFRS-R score, the importance levels of the 12 criteria may vary in clinical practice. In this classical approach, the relationships among the parameters are not considered and the effects of bulbar, spinal, and respiratory dysfunctions on a patient's activities of daily living may be different. METHODS In this study, we aimed to evaluate ALS cases with the ALSFRS-R fuzzy method. Although each subheading in the ALSFRS-R had the same score, the disease score was determined by the fuzzy ALSFRS-R method, based on whether a subheading had priority in management of the disease. While creating the functional rating scale ALSFRS-R approach, fuzzy ALSFRS-R score values were obtained by creating fuzzy models for each main group and integrating the fuzzy model results of each main group into a separate model. RESULTS In total, 50 patients with definite ALS according to the El Escorial criteria (33 men [66%] and 17 women [34%]; mean age, 58.49±10.01 years) were included in the study. When ALSFRS-R results and fuzzy ALSFRS-R results were compared, the prioritization order of 45 patients increased using the fuzzy ALSFRS-R score, while the prioritization order of five patients remained the same in both evaluations. CONCLUSION The approach obtained by using fuzzy membership functions and decision rules, formed in accordance with expert opinion, was applied to the data of 50 patients from a large-scale hospital. In total, 90% of the patients had increased prioritization when using the fuzzy ALSFRS-R scoring method. Our results showed that the fuzzy approach provided more accurate information regarding a patient's condition.
Collapse
Affiliation(s)
- Gizem GÜL KOÇ
- Department of Industrial Engineering, Faculty of Engineering, Çukurova University, Adana, Turkey
| | - Cansu DAĞSUYU
- Department of Industrial Engineering, Faculty of Engineering, Alparslan Turkeş Science and Technology University, Adana, Turkey
| | - Ali KOKANGÜL
- Department of Industrial Engineering, Faculty of Engineering, Çukurova University, Adana, Turkey
| | - Filiz KOÇ
- Department of Neurology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
5
|
Mei J, Desrosiers C, Frasnelli J. Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature. Front Aging Neurosci 2021; 13:633752. [PMID: 34025389 PMCID: PMC8134676 DOI: 10.3389/fnagi.2021.633752] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diagnosis of Parkinson's disease (PD) is commonly based on medical observations and assessment of clinical signs, including the characterization of a variety of motor symptoms. However, traditional diagnostic approaches may suffer from subjectivity as they rely on the evaluation of movements that are sometimes subtle to human eyes and therefore difficult to classify, leading to possible misclassification. In the meantime, early non-motor symptoms of PD may be mild and can be caused by many other conditions. Therefore, these symptoms are often overlooked, making diagnosis of PD at an early stage challenging. To address these difficulties and to refine the diagnosis and assessment procedures of PD, machine learning methods have been implemented for the classification of PD and healthy controls or patients with similar clinical presentations (e.g., movement disorders or other Parkinsonian syndromes). To provide a comprehensive overview of data modalities and machine learning methods that have been used in the diagnosis and differential diagnosis of PD, in this study, we conducted a literature review of studies published until February 14, 2020, using the PubMed and IEEE Xplore databases. A total of 209 studies were included, extracted for relevant information and presented in this review, with an investigation of their aims, sources of data, types of data, machine learning methods and associated outcomes. These studies demonstrate a high potential for adaptation of machine learning methods and novel biomarkers in clinical decision making, leading to increasingly systematic, informed diagnosis of PD.
Collapse
Affiliation(s)
- Jie Mei
- Chemosensory Neuroanatomy Lab, Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | - Christian Desrosiers
- Laboratoire d'Imagerie, de Vision et d'Intelligence Artificielle (LIVIA), Department of Software and IT Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Johannes Frasnelli
- Chemosensory Neuroanatomy Lab, Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal (CIUSSS du Nord-de-l'Île-de-Montréal), Montreal, QC, Canada
| |
Collapse
|