1
|
Qi F, Chaoqun Z, Weijun Y, Qingwen W, Rongxian O. Lignin-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
On the basis of the world’s continuing consumption of raw materials, there was an urgent need to seek sustainable resources. Lignin, the second naturally abundant biomass, accounts for 15–35% of the cell walls of terrestrial plants and is considered waste for low-cost applications such as thermal and electricity generation. The impressive characteristics of lignin, such as its high abundance, low density, biodegradability, antioxidation, antibacterial capability, and its CO2 neutrality and enhancement, render it an ideal candidate for developing new polymer/composite materials. In past decades, considerable works have been conducted to effectively utilize waste lignin as a component in polymer matrices for the production of high-performance lignin-based polymers. This chapter is intended to provide an overview of the recent advances and challenges involving lignin-based polymers utilizing lignin macromonomer and its derived monolignols. These lignin-based polymers include phenol resins, polyurethane resins, polyester resins, epoxy resins, etc. The structural characteristics and functions of lignin-based polymers are discussed in each section. In addition, we also try to divide various lignin reinforced polymer composites into different polymer matrices, which can be separated into thermoplastics, rubber, and thermosets composites. This chapter is expected to increase the interest of researchers worldwide in lignin-based polymers and develop new ideas in this field.
Collapse
Affiliation(s)
- Fan Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Zhang Chaoqun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Yang Weijun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University , 214122 Wuxi , P. R. China
| | - Wang Qingwen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Ou Rongxian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| |
Collapse
|
2
|
Sombutsuwan P, Jirattisakul A, Nakornsadet A, Akepratumchai S, Chumsantea S, Pojjanapornpun S, Lilitchan S, Krisnangkura K, Aryusuk K. A Simple and Efficient Method for Synthesis and Extraction of Ethyl Ferulate from γ-Oryzanol. J Oleo Sci 2021; 70:757-767. [PMID: 34078757 DOI: 10.5650/jos.ess20180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ethyl ferulate (EF) is a ferulic acid (FA) derivative with high commercial value. It is not found naturally and is mostly synthesized from FA via esterification with ethanol. The present work aimed to synthesize the EF from γ-oryzanol, a natural antioxidant from rice bran oil via acid-catalyzed transethylation at refluxing temperature of ethanol. The reaction was optimized by central composite design (CCD) under response surface methodology. Based on the CCD, the optimum condition for the synthesis of EF from 0.50 g of γ-oryzanol was as follows: γ-oryzanol to ethanol ratio of 0.50:2 (g/mL), 12.30% (v/v) H2SO4, and a reaction time of 9.37 h; these conditions correspond to a maximum EF yield of 87.11%. Moreover, the optimized transethylation condition was further validated using 12.50 g of γ-oryzanol. At the end of the reaction time, distilled water was added as antisolvent to selectively crystallize the co-products, phytosterol and unreacted γ-oryzanol, by adjusting the ethanol concentration to 49.95% (v/v). The recovery yield of 83.60% with a purity of 98% of EF was achieved. In addition, the DPPH and ABTS assays showed similar antioxidant activities between the prepared and commercial EF.
Collapse
Affiliation(s)
- Piraporn Sombutsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Apiwat Jirattisakul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Akkaradech Nakornsadet
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Saengchai Akepratumchai
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Salisa Chumsantea
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Siriluck Pojjanapornpun
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT)
| | | | - Kanit Krisnangkura
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi
| |
Collapse
|