1
|
Lv Y, Cheng L, Zhang X, Peng F, Yuan Y, Weng X, Lin WT. Effects of a single bout of exercise on human hemocytes and serum interleukin 3, erythropoietin, and soluble transferrin receptor in a hot and humid environment. PeerJ 2024; 12:e18603. [PMID: 39624122 PMCID: PMC11610479 DOI: 10.7717/peerj.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Exercise in humid and hot environments (HHEs) may result in decreased perception, motor performance, and memory owing to endogenous heat production and exogenous load. However, whether a single bout of exercise (SBOE) intensity affects the magnitude of changes in the levels of hemocytes remains controversial. In this article, we aimed to investigate the effects of a SBOE of varying intensities on blood cells in HHE. Methods Thirty-two volunteers were randomly divided into a quiet control group (QC), 55% VO2max intensity exercise group (HHE55%), 70% VO2max intensity exercise group (HHE70%), and 85% VO2max intensity exercise group (HHE85%). The participants in the exercise groups were assigned to perform an SBOE on the treadmill under HHE conditions for 30 min, whereas participants in the QC remained still under HHE conditions for 30 min (temperature: 28-32 °C, relative humidity: 85-95%). Results The net body mass (NBM), perfusion index (PI), mean corpuscular volume (MCV), platelet (PLT), and plateletcrit (PCT) values were affected significantly by the exercise intensity (P < 0.01) the hemoglobin (HGB) and neutrophil count (NE) were affected significantly by exercise intensity (P < 0.05). After an SBOE, compared with that before exercise, the sublingual temperature (ST) of all groups, the NBM and MCV of all exercise groups, the PI of the HHE55% and HHE70% groups, the HGB, hematocrit (HCT), and NE of the HHE70% group, the red blood cell count (RBC), PLT, and PCT of the HHE70% and HHE85% groups, and the white blood cell count (WBC) of HHE85% changed very significantly (P < 0.01). The PCT of QC, blood oxygen saturation (SaO2), and soluble transferrin receptor (sTfR) levels in the HHE55% group, the lymphocyte count (LY) in the HHE70% group, and the HGB and HCT in the HHE85% group changed significantly (P < 0.05). Conclusion Low- and moderate-intensity SBOE in HHE could increase the serum EPO and serum sTfR levels and decrease the serum IL-3 levels. Conversely, a high-intensity load could increase the risk of inflammation. Therefore, low-intensity exercise may be more appropriate for an SBOE in HHE.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, GuangZhou, Guangdong, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, GuangZhou, Guangdong, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, GuangZhou, Guangdong, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, GuangZhou, Guangdong, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yu Yuan
- Guangzhou Sport University, Guangzhou, Gaungdong, China
| | - Xiquan Weng
- Guangzhou Sport University, Guangzhou, Gaungdong, China
| | - Wen-Tao Lin
- College of Sports Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Neumann S, Casjens S, Hoffmeyer F, Rühle K, Gamrad-Streubel L, Haase LM, Rudolph KK, Giesen J, Neumann V, Taeger D, Pallapies D, Birk T, Brüning T, Bünger J. Club cell protein (CC16) in serum as an effect marker for small airway epithelial damage caused by diesel exhaust and blasting fumes in potash mining. Int Arch Occup Environ Health 2024; 97:121-132. [PMID: 38110551 PMCID: PMC10876725 DOI: 10.1007/s00420-023-02035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The effect marker club cell protein (CC16) is secreted by the epithelium of the small respiratory tract into its lumen and passes into the blood. Increased amounts of CC16 in serum are observed during acute epithelial lung injury due to air pollutants. CC16 in serum was determined as part of this cross-sectional study in underground potash miners on acute and chronic health effects from exposures to diesel exhaust and blasting fumes. METHODS Nitrogen oxides, carbon monoxide, and diesel particulate matter were measured in 672 workers at a German potash mining site on a person-by-person basis over an early shift or midday shift, together with CC16 serum concentrations before and after the respective shift. CC16 concentrations and CC16 shift-differences were evaluated with respect to personal exposure measurements and other quantitative variables by Spearman rank correlation coefficients. CC16 shift-differences were modeled using multiple linear regression. Above-ground workers as reference group were compared to the exposed underground workers. RESULTS Serum concentrations of CC16 were influenced by personal characteristics such as age, smoking status, and renal function. Moreover, they showed a circadian rhythm. While no statistically significant effects of work-related exposure on CC16 concentrations were seen in never smokers, such effects were evident in current smokers. CONCLUSION The small airways of current smokers appeared to be vulnerable to the combination of measured work-related exposures and individual exposure to smoking. Therefore, as health protection of smokers exposed to diesel exhaust and blasting fumes, smoking cessation is strongly recommended.
Collapse
Affiliation(s)
- Savo Neumann
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Frank Hoffmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Katrin Rühle
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa Gamrad-Streubel
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa-Marie Haase
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Katharina K Rudolph
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Jörg Giesen
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Volker Neumann
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Dirk Pallapies
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Birk
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
3
|
Effects of Different Hydration Strategies in Young Men during Prolonged Exercise at Elevated Ambient Temperatures on Pro-Oxidative and Antioxidant Status Markers, Muscle Damage, and Inflammatory Status. Antioxidants (Basel) 2023; 12:antiox12030642. [PMID: 36978890 PMCID: PMC10045838 DOI: 10.3390/antiox12030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Physical exercise is associated with an increase in the speed of metabolic processes to supply energy to working muscles and endogenous heat production. Intense sweating caused by the work performed at high ambient temperatures is associated with a significant loss of water and electrolytes, leading to dehydration. This study aimed to examine the effectiveness of different hydration strategies in young men during prolonged exercise at elevated ambient temperatures on levels of pro-oxidative and antioxidant status, oxidative status markers (TAC/TOC), muscle cell damage (Mb, LDH), and inflammatory status (WBC, CRP, IL-1β). The study was conducted on a group of 12 healthy men with average levels of aerobic capacity. The intervention consisted of using various hydration strategies: no hydration; water; and isotonic drinks. The examination was di-vided into two main stages. The first stage was a preliminary study that included medical exami-nations, measurements of somatic indices, and exercise tests. The exercise test was performed on a cycle ergometers. Their results were used to determine individual relative loads for the main part of the experiment. In the second stage, the main study was conducted, involving three series of weekly experimental tests using a cross-over design. The change in plasma volume (∆PV) measured im-mediately and one hour after the exercise test was significantly dependent on the hydration strategy (p = 0.003 and p = 0.002, respectively). The mean values of oxidative status did not differ signifi-cantly between the hydration strategy used and the sequence in which the test was performed. Using isotonic drinks, due to the more efficient restoration of the body’s water and electrolyte balance compared to water or no hydration, most effectively protects muscle cells from the negative effects of exercise, leading to heat stress of exogenous and endogenous origin.
Collapse
|
4
|
Sevilla-Lorente R, Carneiro-Barrera A, Molina-Garcia P, Ruiz JR, Amaro-Gahete FJ. Time of the day of exercise impact on cardiovascular disease risk factors in adults: a systematic review and meta-analysis. J Sci Med Sport 2023; 26:169-179. [PMID: 36973109 DOI: 10.1016/j.jsams.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES To compare the effect of a single bout of morning vs. evening exercise on cardiovascular risk factors in adults. DESIGN Systematic review and meta-analysis. METHODS A systematic search of studies was conducted using PubMed and Web of Science from inception to June 2022. Selected studies accomplished the following criteria: crossover design, acute effect of exercise, blood pressure, blood glucose, and/or blood lipids as the study's endpoint, a washout period of at least 24 h, and adults. Meta-analysis was performed by analyzing: 1) separated effect of morning and evening exercise (pre vs. post); and 2) comparison between morning and evening exercise. RESULTS A total of 11 studies were included for systolic and diastolic blood pressure and 10 studies for blood glucose. Meta-analysis revealed no significant difference between morning vs. evening exercise for systolic blood pressure (g ∆ = 0.02), diastolic blood pressure (g ∆ = 0.01), or blood glucose (g ∆ = 0.15). Analysis of moderator variables (age, BMI, sex, health status, intensity and duration of exercise, and hour within the morning or evening) showed no significant morning vs. evening effect. CONCLUSIONS Overall, we found no influence of the time of the day on the acute effect of exercise on blood pressure neither on blood glucose.
Collapse
Affiliation(s)
- R Sevilla-Lorente
- Department of Physiology, Faculty of Pharmacy, University of Granada, Spain.
| | | | - P Molina-Garcia
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Spain
| | - J R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - F J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
5
|
Bennett S, Sato S. Enhancing the metabolic benefits of exercise: Is timing the key? Front Endocrinol (Lausanne) 2023; 14:987208. [PMID: 36875451 PMCID: PMC9974656 DOI: 10.3389/fendo.2023.987208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Physical activity represents a potent, non-pharmacological intervention delaying the onset of over 40 chronic metabolic and cardiovascular diseases, including type 2 diabetes, coronary heart disease, and reducing all-cause mortality. Acute exercise improves glucose homeostasis, with regular participation in physical activity promoting long-term improvements in insulin sensitivity spanning healthy and disease population groups. At the skeletal muscle level, exercise promotes significant cellular reprogramming of metabolic pathways through the activation of mechano- and metabolic sensors, which coordinate downstream activation of transcription factors, augmenting target gene transcription associated with substrate metabolism and mitochondrial biogenesis. It is well established that frequency, intensity, duration, and modality of exercise play a critical role in the type and magnitude of adaptation; albeit, exercise is increasingly considered a vital lifestyle factor with a critical role in the entrainment of the biological clock. Recent research efforts revealed the time-of-day-dependent impact of exercise on metabolism, adaptation, performance, and subsequent health outcomes. The synchrony between external environmental and behavioural cues with internal molecular circadian clock activity is a crucial regulator of circadian homeostasis in physiology and metabolism, defining distinct metabolic and physiological responses to exercise unique to the time of day. Optimising exercise outcomes following when to exercise would be essential to establishing personalised exercise medicine depending on exercise objectives linked to disease states. We aim to provide an overview of the bimodal impact of exercise timing, i.e. the role of exercise as a time-giver (zeitgeber) to improve circadian clock alignment and the underpinning clock control of metabolism and the temporal impact of exercise timing on the metabolic and functional outcomes associated with exercise. We will propose research opportunities that may further our understanding of the metabolic rewiring induced by specific exercise timing.
Collapse
|
6
|
Bommasamudram T, Ravindrakumar A, Varamenti E, Tod D, Edwards BJ, Peter IG, Pullinger SA. Daily variation in time-trial sporting performance: A systematic review. Chronobiol Int 2022; 39:1167-1182. [PMID: 35815685 DOI: 10.1080/07420528.2022.2090373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Few functional measures related to time-trial display diurnal variation. The diversity of tests/protocols used to assess time-trial performance on diurnal effects and the lack of a standardised approach hinder agreement in the literature. Therefore, the aims of the present study were to investigate and systematically review the evidence relating to time-of-day differences in time-trial measures and to examine the main aspects related to research design important for studies of a chronobiological nature. The entire content of Manipal Academy of Higher Education electronic library and Qatar National Library, and electronic databases: PubMed (MEDLINE), Scopus and Web of Science were searched. Research studies published in peer-reviewed journals and non-peer reviewed studies, conducted in male adult participants aged ≥18 y before November 2021 were screened/included. Studies assessing tests related to time-trials in any modality between a minimum of 2 time-points during the day (morning [06:30-10:30 h] vs evening [14:30-20:00 h]) were deemed eligible. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) process was used to assess the evidence to inform recommendations. The primary search revealed that a total of 10 from 40 articles were considered eligible and subsequently included. Six were conducted using cycling, two using running and two using swimming as the mode of exercise. Distances ranged from 1 to 16.1-km in distance or 15 to 20-min time in the cycling and running time-trials, and 50 to 200-m in the swimming time-trials. Only four studies found one or several of their performance variables to display daily variations, with significantly better values in the evening; while six studies found no time-of-day significance in any variables assessed. The magnitude of difference ranged from 2.9% to 7.1% for performance time to complete a cycling time-trial, while running and swimming did not find any differences for performance time. Power output during a 16.1-km time trial in cycling also found evening performance to be significantly better by 10%. The only other observed differences were stroke rate and stroke length during a swimming time-trial and stroke rate (cycles.min-1) during a cycling time-trial. The magnitude of difference is dependent on exercise modality, individual chronotype, the training status of the individual and sample size differences. The lack of diurnal variation present in the majority of studies can in-part be explained with some of the methodological limitations and issues present related to quality and control. It is paramount that research assessing diurnal variation in performance uses appropriate session timings around the core body temperature minimum (~05:00 h; morning) and maximum (~17:00 h; evening). Although, differences in motivation/arousal, habitual training times, chronotypes and genotypes could provide an explanation as to why some studies/variables did not display time-of-day variation, more work is needed to provide an accurate conclusion. There is a clear demand for a rigorous, standardised approach to be adopted by future investigations which control factors that specifically relate to investigations of time-of-day, such as appropriate familiarisation, counterbalancing the order of administration of tests, providing sufficient recovery time between sessions and testing within a controlled environment.
Collapse
Affiliation(s)
- Tulasiram Bommasamudram
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Aishwarya Ravindrakumar
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | | | - David Tod
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ben J Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Irene G Peter
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
7
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
8
|
Basti A, Yalçin M, Herms D, Hesse J, Aboumanify O, Li Y, Aretz Z, Garmshausen J, El-Athman R, Hastermann M, Blottner D, Relógio A. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc Med 2021; 7:e000876. [PMID: 33680499 PMCID: PMC7878143 DOI: 10.1136/bmjsem-2020-000876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. Methods 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. Results Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15–18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. Conclusion Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.
Collapse
Affiliation(s)
- Alireza Basti
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Müge Yalçin
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Herms
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Karate Department, Berliner Turn- und Sportclub e.V, Berlin, Germany
| | - Janina Hesse
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ouda Aboumanify
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yin Li
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zita Aretz
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefin Garmshausen
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rukeia El-Athman
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maria Hastermann
- Center of Space Medicine Berlin, NeuroMuscular Group and Institut für Integrative Neuroanatomie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Blottner
- Center of Space Medicine Berlin, NeuroMuscular Group and Institut für Integrative Neuroanatomie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Angela Relógio
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Gentil P, de Lira CAB, Coswig V, Barroso WKS, Vitorino PVDO, Ramirez-Campillo R, Martins W, Souza D. Practical Recommendations Relevant to the Use of Resistance Training for COVID-19 Survivors. Front Physiol 2021; 12:637590. [PMID: 33746777 PMCID: PMC7966515 DOI: 10.3389/fphys.2021.637590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The novel coronavirus disease (COVID-19) has emerged at the end of 2019 and caused a global pandemic. The disease predominantly affects the respiratory system; however, there is evidence that it is a multisystem disease that also impacts the cardiovascular system. Although the long-term consequences of COVID-19 are not well-known, evidence from similar diseases alerts for the possibility of long-term impaired physical function and reduced quality of life, especially in those requiring critical care. Therefore, rehabilitation strategies are needed to improve outcomes in COVID-19 survivors. Among the possible strategies, resistance training (RT) might be particularly interesting, since it has been shown to increase functional capacity both in acute and chronic respiratory conditions and in cardiac patients. The present article aims to propose evidence-based and practical suggestions for RT prescription for people who have been diagnosed with COVID-19 with a special focus on immune, respiratory, and cardiovascular systems. Based on the current literature, we present RT as a possible safe and feasible activity that can be time-efficient and easy to be implemented in different settings.
Collapse
Affiliation(s)
- Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil.,Hypertension League, Federal University of Goiás, Goiânia, Brazil
| | | | - Victor Coswig
- College of Physical Education, Federal University of Pará, Castanhal, Brazil
| | | | - Priscila Valverde de Oliveira Vitorino
- Hypertension League, Federal University of Goiás, Goiânia, Brazil.,Social Sciences and Health School, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Wagner Martins
- Physiotherapy College, University of Brasília, Brasília, Brazil
| | - Daniel Souza
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
10
|
Influence of Sex and Acute Beetroot Juice Supplementation on 2 KM Running Performance. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose: To assess the effect of acute nitrate-rich (BJ) and nitrate-depleted (PL) beetroot juice ingestion on 2 km running performance in amateur runners, and to what extent the ergogenic effect of BJ supplementation would be influenced by the sex of the participants; Methods: Twenty-four amateur long-distance runners (14 males and 10 females) performed a 2 km time trial (TT) on an outdoor athletics track 2.5 h after ingesting either 140 mL of BJ (~12.8 mmol NO3−) or PL. After the tests, blood [lactate] and ratings of perceived exertion (RPE) related to the leg muscles (RPEmuscular), cardiovascular system (RPEcardio) and general overall RPE (RPEgeneral) were assessed; Results: Compared to PL, BJ supplementation improved 2 km TT performance in both males (p < 0.05) with no supplement × sex interaction effect (p > 0.05). This improvement in 2 km running performance was a function of improved performance in the second 1 km split time in both males and females (p < 0.05). Supplementation with BJ did not alter post-exercise blood [lactate] (p > 0.05) but lowered RPEgeneral (p < 0.05); Conclusions: acute BJ supplementation improves 2 km running performance in amateur runners by enhancing performance over the second half of the TT and lowering RPEgeneral by a comparable magnitude in males and females.
Collapse
|
11
|
Min HJ, Min SJ, Kang H, Kim KS. Differential Nasal Expression of Heat Shock Proteins 27 and 70 by Aerobic Exercise: A Preliminary Study. Int J Med Sci 2020; 17:640-646. [PMID: 32210714 PMCID: PMC7085210 DOI: 10.7150/ijms.39631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/02/2020] [Indexed: 11/10/2022] Open
Abstract
Purpose: Exercise modifies airway immune responses and susceptibility to infection. We investigated the effects of exercise on two HSPs (heat shock proteins), quantifying expression levels in nasal mucosa of both professional competitive athletes and non-athletes for comparison. Method: We used western blot technique to determine expression levels of HSPs in primary human nasal epithelial cells (HNECs). Nasal lavage (NAL) fluids were collected from 12 male professional volley ball players and 6 healthy males pre-submaximal exercise (running for 30 min at 70-80% of maximal heart rate) and post-submaximal exercise. Expression levels of HSP27, HSP70, Interleukin (IL)-8, and Tumor necrosis factor (TNF)-α in NAL fluids were quantified by enzyme-linked immunosorbent assay (ELISA), and difference of the level between pre-submaximal exercise and post-submaximal exercise was statistically analyzed. Antibacterial assay using Staphylococcus aureus was performed to assess the immunological role of HSPs in NAL fluids. Results:. In non-athlete controls, HSP27, HSP70, and IL-8 were unchanged after exercise. In the professional athletes, HSP70 expression was declined significantly (p<0.05), but HSP27 was not significantly changed. IL-8 and TNF-α did not show significant difference, either. By antibacterial assay, it was found that the number of active bacterial populations were influenced by the presence or absence of HSP27 and HSP70 in NAL fluids. Conclusion: HSP27 and HSP70 were present in NAL fluids of enrolled subjects, and the effect of exercise on the level HSPs was different between professional athletic competitors and non-athletes. As the number of active bacterial population was influenced by the presence or absence of nasal HSP27 and HSP70, we suggest that HSP27 and HSP70 may play immunological function in NAL fluids.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung- Ang University Hospital, Seoul, Republic of Korea
| | - Sung Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung- Ang University Hospital, Seoul, Republic of Korea
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chung- Ang University Hospital, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung- Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
12
|
Abstract
Circadian rhythms and exercise physiology are intimately linked, but the symbiosis of this relationship has yet to be fully unraveled. Exercise exerts numerous health benefits from the organelle to the organism. Proper circadian function is also emerging as a prerequisite for maintaining health. The positive effects of exercise on health may be partially mediated by an exercise-induced change in tissue molecular clocks and/or the outcomes of exercise may be modified depending on when exercise is performed. This review provides a brief overview of circadian biology and the influence of exercise on the molecular clock, with an emphasis on skeletal muscle. Additionally, we provide considerations for future investigations seeking to unravel the mechanistic interactions of exercise and the molecular clock.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, USA 32610.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, USA 32610
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, USA 32610.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, USA 32610
| |
Collapse
|
13
|
Silva RPM, Barros CLM, Mendes TT, Garcia ES, Valenti VE, de Abreu LC, Garner DM, Salmen Espindola F, Penha-Silva N. The influence of a hot environment on physiological stress responses in exercise until exhaustion. PLoS One 2019; 14:e0209510. [PMID: 30726225 PMCID: PMC6364866 DOI: 10.1371/journal.pone.0209510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 01/06/2023] Open
Abstract
Exhaustive exercise in a hot environment can impair performance. Higher epinephrine plasma levels occur during exercise in heat, indicating greater sympathetic activity. This study examined the influence of exercise in the heat on stress levels. Nine young healthy men performed a maximal progressive test on a cycle ergometer at two different environmental conditions: hot (40°C) and normal (22°C), both between 40% and 50% relative humidity. Venous blood and saliva samples were collected pre-test and post-test. Before exercise there were no significant changes in salivary biomarkers (salivary IgA: p = 0.12; α-amylase: p = 0.66; cortisol: p = 0.95; nitric oxide: p = 0.13; total proteins: p = 0.07) or blood lactate (p = 0.14) between the two thermal environments. Following exercise, there were significant increases in all variables (salivary IgA 22°C: p = 0.04, 40°C: p = 0.0002; α-amylase 22°C: p = 0.0002, 40°C: p = 0.0002; cortisol 22°C: p = 0.02, 40°C: p = 0.0002; nitric oxide 22°C: p = 0.0005, 40°C: p = 0.0003, total proteins 22°C: p<0.0001, 40°C: p<0.0001 and; blood lactate 22°C: p<0.0001, 40°C: p<0.0001) both at 22°C and 40°C. There was no significant adjustment regarding IgA levels between the two thermal environments (p = 0.74), however the levels of α-amylase (p = 0.02), cortisol (p<0.0001), nitric oxide (p = 0.02) and total proteins (p = 0.01) in saliva were higher in the hotter conditions. Blood lactate was lower under the hot environment (p = 0.01). In conclusion, enduring hot temperature intensified stressful responses elicited by exercise. This study advocates that hot temperature deteriorates exercise performance under exhaustive stress and effort conditions.
Collapse
Affiliation(s)
- Romeu P. M. Silva
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
| | - Cristiano L. M. Barros
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
- Federal University of Acre, Rio Branco, AC, Brazil
| | - Thiago T. Mendes
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
- Federal University of Acre, Rio Branco, AC, Brazil
| | - Emerson S. Garcia
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
- Federal University of Acre, Rio Branco, AC, Brazil
| | - Vitor E. Valenti
- Post-Graduate Program in Physical Therapy, UNESP, Presidente Prudente, SP, Brazil
| | - Luiz Carlos de Abreu
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
| | - David M. Garner
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
| | - Nilson Penha-Silva
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Physiology and Morphology, School of Medicine of ABC, Santo Andre, SP, Brazil
- * E-mail: ,
| |
Collapse
|