1
|
Chen J, Qian Y, Li H, Zuo W, Sun W, Xing D, Zhou X. Lysophosphatidic Acid/Polydopamine-Modified nHA Composite Scaffolds for Enhanced Osteogenesis via Upregulating the Wnt/Beta-Catenin Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13466-13480. [PMID: 38445450 DOI: 10.1021/acsami.3c16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Guided bone regeneration (GBR) technology has been widely used for the regeneration of periodontal bone defects. However, the limited mechanical properties and bone regeneration potential of the currently available GBR membranes often limit their repair effectiveness. In this paper, serum-derived growth factor lysophosphatidic acid (LPA) nanoparticles and dopamine-decorative nanohydroxyapatite (pDA/nHA) particles were double-loaded into polylactic-glycolic acid/polycaprolactone (PLGA/PCL) scaffolds as an organic/inorganic biphase delivery system, namely, PP-pDA/nHA-LPA scaffolds. Physicochemical properties and osteogenic ability in vitro and in vivo were performed. Scanning electron microscopy and mechanical tests showed that the PP-pDA/nHA-LPA scaffolds had a 3D bionic scaffold structure with improved mechanical properties. In vitro cell experiments demonstrated that the PP-pDA/nHA-LPA scaffolds could significantly enhance the attachment, proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. In vivo, the PP-pDA/nHA-LPA scaffolds exhibited great cytocompatibility and cell recruitment ability in 2- and 4-week subcutaneous implantation experiments and significantly promoted bone regeneration in the periodontal defect scaffold implantation experiment. Moreover, LPA-loaded scaffolds were confirmed to enhance osteogenic activities by upregulating the expression of β-catenin and further activating the Wnt/β-catenin pathway. These results demonstrate that the biphase PP-pDA/nHA-LPA delivery system is a promising material for the GBR.
Collapse
Affiliation(s)
- Jiahong Chen
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215123, People's Republic of China
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Yunzhu Qian
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215123, People's Republic of China
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Heng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Wei Zuo
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Wentao Sun
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Danlei Xing
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
2
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
3
|
Tocotrienol as a Protecting Agent against Glucocorticoid-Induced Osteoporosis: A Mini Review of Potential Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185862. [PMID: 36144598 PMCID: PMC9506150 DOI: 10.3390/molecules27185862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/β-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.
Collapse
|
4
|
Rajagopalan VR, Manickam S, Muthurajan R. A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040543. [PMID: 35214876 PMCID: PMC8876031 DOI: 10.3390/plants11040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 05/29/2023]
Abstract
Rice (Oryza sativa L.) is the staple food of the majority of the population, particularly in Asia and Africa. Enriching rice with nutritional and therapeutic contents can improve its benefits for patients with lifestyle disorders. This study aimed to profile the phytochemical contents of the therapeutically known traditional rice Mappillai Samba against white rice CBMAS 14065 using non-targeted gas chromatography-mass spectrometry (GC-MS/MS). An analysis of the data using a mass spectrometry-data independent analysis (MS-DIAL) and MetaboAnalyst identified 113 metabolites belonging to 21 different classes of metabolites. A partial least square-discriminant analysis (PLS-DA) revealed 43 variable importance in projection (VIP) metabolites. This study identified therapeutically important metabolites, including phenylpropanoids, phytosterols, flavonoids, and polyamines, in the grains of Mappillai Samba. Three significant metabolic pathways, viz., phenylpropanoid biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and steroid biosynthesis, were responsible for the grain metabolome variation between CBMAS 14065 and Mappillai Samba. Overall, the results of this study unravelled the biochemical complexity of Mappillai Samba, paving the way for the genetic mapping of the therapeutic compound accumulation in rice and the development of similar therapeutic rice varieties through molecular breeding.
Collapse
|
5
|
Xu W, Li Y, Feng R, He P, Zhang Y. γ-Tocotrienol induced the proliferation and differentiation of MC3T3-E1 cells through the stimulation of the Wnt/β-catenin signaling pathway. Food Funct 2022; 13:398-410. [PMID: 34908071 DOI: 10.1039/d1fo02583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Tocotrienol (γ-T3), an isoprenoid phytochemical, has shown the promotion of osteoblast proliferation and differentiation in our previous study. In this study, its underlying mechanism was investigated through regulating the Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Comparative experiment results showed that γ-T3, not α-tocopherol (α-TOC) increased more significantly the viability and differentiation in MC3T3-E1 cells. After that, the cells were incubated with 10 mM LiCl, or 4 μM γ-T3 with or without 1 μM XAV-939. γ-T3 at 4 μM stimulated the Wnt/β-catenin signaling pathway by increasing the expression and nuclear accumulation of β-catenin, and the expressions of their downstream factors, such as cyclin-D1, c-Myc, BMP2 and BMP-4 in MC3T3-E1 cells. γ-T3 not only upregulated the viability, induced G0/G1 to the S phase, and promoted the expressions of PCNA (Proliferating Cell Nuclear Antigen) and Ki-67, but also increased ALP activity and the expressions of ON, OPN and OCN. Moreover, the effects of γ-T3 on the MC3T3-E1 cells resembled the actions of LiCl, an activator of the Wnt/β-catenin signaling pathway. Notably, all these effects of γ-T3 on the MC3T3-E1 cells were completely blocked by the Wnt/β-catenin signaling pathway inhibitor XAV-939. Our data demonstrated that γ-T3 can target β-catenin to enhance the Wnt/β-catenin signaling pathway, which led to increased expressions of the downstream cell proliferation and cell cycle-associated (cyclin D1 and c-myc), and cell differentiation-associated (BMP-2 and BMP-4) target genes, and ultimately promoted MC3T3-E1 cell proliferation and differentiation. Therefore, γ-T3 may be a potential agent to prevent and reverse osteoporosis due to its safety and powerful abilities of osteogenesis.
Collapse
Affiliation(s)
- Weili Xu
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yutong Li
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, China
| | - Pan He
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yuqi Zhang
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| |
Collapse
|
6
|
The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence. Int J Mol Sci 2019; 20:ijms20061453. [PMID: 30909398 PMCID: PMC6471965 DOI: 10.3390/ijms20061453] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
Collapse
|
7
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|