1
|
Deininger K, Korf P, Lauber L, Grimm R, Strecker R, Steinacker J, Lisson CS, Mühling BM, Schmidtke-Schrezenmeier G, Rasche V, Speidel T, Glatting G, Beer M, Beer AJ, Thaiss W. From Phantoms to Patients: Improved Fusion and Voxel-Wise Analysis of Diffusion-Weighted Imaging and FDG-Positron Emission Tomography in Positron Emission Tomography/Magnetic Resonance Imaging for Combined Metabolic-Diffusivity Index (cDMI). Diagnostics (Basel) 2024; 14:1787. [PMID: 39202275 PMCID: PMC11353375 DOI: 10.3390/diagnostics14161787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) opens new possibilities in multimodal multiparametric (m2p) image analyses. But even the simultaneous acquisition of positron emission tomography (PET) and magnetic resonance imaging (MRI) does not guarantee perfect voxel-by-voxel co-registration due to organs and distortions, especially in diffusion-weighted imaging (DWI), which would be, however, crucial to derive biologically meaningful information. Thus, our aim was to optimize fusion and voxel-wise analyses of DWI and standardized uptake values (SUVs) using a novel software for m2p analyses. Using research software, we evaluated the precision of image co-registration and voxel-wise analyses including the rigid and elastic 3D registration of DWI and [18F]-Fluorodeoxyglucose (FDG)-PET from an integrated PET/MR system. We analyzed DWI distortions with a volume-preserving constraint in three different 3D-printed phantom models. A total of 12 PET/MR-DWI clinical datasets (bronchial carcinoma patients) were referenced to the T1 weighted-DIXON sequence. Back mapping of scatterplots and voxel-wise registration was performed and compared to the non-optimized datasets. Fusion was rated using a 5-point Likert scale. Using the 3D-elastic co-registration algorithm, geometric shapes were restored in phantom measurements; the measured ADC values did not change significantly (F = 1.12, p = 0.34). Reader assessment showed a significant improvement in fusion precision for DWI and morphological landmarks in the 3D-registered datasets (4.3 ± 0.2 vs. 4.6 ± 0.2, p = 0.009). Most pronounced differences were noted for the chest wall (p = 0.006), tumor (p = 0.007), and skin contour (p = 0.014). Co-registration increased the number of plausible ADC and SUV combinations by 25%. The volume-preserving elastic 3D registration of DWI significantly improved the precision of fusion with anatomical sequences in phantom and clinical datasets. The research software allowed for a voxel-wise analysis and visualization of [18F]FDG-PET/MR data as a "combined diffusivity-metabolic index" (cDMI). The clinical value of the optimized PET/MR biomarker can thus be tested in future PET/MR studies.
Collapse
Affiliation(s)
| | - Patrick Korf
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | - Leonard Lauber
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
| | - Robert Grimm
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | | | - Jochen Steinacker
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Catharina S. Lisson
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bernd M. Mühling
- Section Thoracic and Vascular Surgery, Department of Cardiac and Thoracic Surgery, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Volker Rasche
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Tobias Speidel
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Gerhard Glatting
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
2
|
Virarkar M, Vulasala SS, Calimano-Ramirez L, Singh A, Lall C, Bhosale P. Current Update on PET/MRI in Gynecological Malignancies-A Review of the Literature. Curr Oncol 2023; 30:1077-1105. [PMID: 36661732 PMCID: PMC9858166 DOI: 10.3390/curroncol30010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Early detection of gynecological malignancies is vital for patient management and prolonging the patient's survival. Molecular imaging, such as positron emission tomography (PET)/computed tomography, has been increasingly utilized in gynecological malignancies. PET/magnetic resonance imaging (MRI) enables the assessment of gynecological malignancies by combining the metabolic information of PET with the anatomical and functional information from MRI. This article will review the updated applications of PET/MRI in gynecological malignancies.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Sai Swarupa Vulasala
- Department of Internal Medicine, East Carolina University Health Medical Center, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Luis Calimano-Ramirez
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Anmol Singh
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Chandana Lall
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
3
|
Skipar K, Hompland T, Lund KV, Løndalen A, Malinen E, Kristensen GB, Lindemann K, Nakken ES, Bruheim K, Lyng H. Risk of recurrence after chemoradiotherapy identified by multimodal MRI and 18F-FDG-PET/CT in locally advanced cervical cancer. Radiother Oncol 2022; 176:17-24. [PMID: 36113778 DOI: 10.1016/j.radonc.2022.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE MRI, applying dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) sequences, and 18F-fluorodeoxyglucose (18F-FDG) PET/CT provide information about tumor aggressiveness that is unexploited in treatment of locally advanced cervical cancer (LACC). We investigated the potential of a multimodal combination of imaging parameters for classifying patients according to their risk of recurrence. MATERIALS AND METHODS Eighty-two LACC patients with diagnostic MRI and FDG-PET/CT, treated with chemoradiotherapy, were collected. Thirty-eight patients with MRI only were included for validation of MRI results. Endpoints were survival (disease-free, cancer-specific, overall) and tumor control (local, locoregional, distant). Ktrans, reflecting vascular function, apparent diffusion coefficient (ADC), reflecting cellularity, and standardized uptake value (SUV), reflecting glucose uptake, were extracted from DCE-MR, DW-MR and FDG-PET images, respectively. By applying an oxygen consumption and supply-based method, ADC and Ktrans parametric maps were voxel-wise combined into hypoxia images that were used to determine hypoxic fraction (HF). RESULTS HF showed a stronger association with outcome than the single modality parameters. This association was confirmed in the validation cohort. Low HF identified low-risk patients with 95% precision. Based on the 50th SUV-percentile (SUV50), patients with high HF were divided into an intermediate- and high-risk group with high and low SUV50, respectively. This defined a multimodality biomarker, HF/SUV50. HF/SUV50 increased the precision of detecting high-risk patients from 41% (HF alone) to 57% and showed prognostic significance in multivariable analysis for all endpoints. CONCLUSION Multimodal combination of MR- and FDG-PET/CT-images improves classification of LACC patients compared to single modality images and clinical factors.
Collapse
Affiliation(s)
- Kjersti Skipar
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Oncology, Telemark Hospital Trust, Skien, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Vassmo Lund
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ayca Løndalen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Gunnar B Kristensen
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway
| | - Kristina Lindemann
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Esten S Nakken
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Bruheim
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Diagnosis of Early Cervical Cancer with a Multimodal Magnetic Resonance Image under the Artificial Intelligence Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6495309. [PMID: 35386728 PMCID: PMC8967556 DOI: 10.1155/2022/6495309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/03/2022]
Abstract
This research was conducted to explore the value of multimodal magnetic resonance imaging (MRI) based on the alternating direction algorithm in the diagnosis of early cervical cancer. 64 patients diagnosed with early cervical cancer clinicopathologically were included, and according to the examination methods, they were divided into A group with conventional multimodal MRI examination and B group with the multimodal MRI examination under the alternating direction algorithm. The diagnostic results of two types of multimodal MRI for early cervical cancer staging were compared with the results of clinicopathological examination to judge the application value in the early diagnosis of cervical cancer. The results showed that in the 6 randomly selected samples of early cervical cancer patients, the peak signal-to-noise ratio (PSNR) and structural similarity image measurement (SSIM) of multimodal MRI images under the alternating direction algorithm were significantly higher than those of conventional multimodal MRI images and the image reconstruction was clearer under this algorithm. By comparing MRI multimodal staging, statistical analysis showed that the staging accuracy of B group was 75%, while that of A group was only 59.38%. For the results of postoperative medical examinations, the examination consistency of B group was better than that of A group, with a statistically significant difference (P < 0.05). The area under the receiver operating characteristic (ROC) curve (AUC) of B group was larger than that of A group; thus, sensitivity was improved and misdiagnosis was reduced significantly. Multimodal MRI under the alternating direction algorithm was superior to conventional multimodal MRI examination in the diagnosis of early cervical cancer, as the lesions were displayed more clearly, which was conducive to the detection rate of small lesions and the staging accuracy. Therefore, it could be used as an ideal MRI method for the assistant diagnosis of cervical cancer staging.
Collapse
|
5
|
Esfahani SA, Torrado-Carvajal A, Amorim BJ, Groshar D, Domachevsky L, Bernstine H, Stein D, Gervais D, Catalano OA. PET/MRI and PET/CT Radiomics in Primary Cervical Cancer: A Pilot Study on the Correlation of Pelvic PET, MRI, and CT Derived Image Features. Mol Imaging Biol 2021; 24:60-69. [PMID: 34622425 DOI: 10.1007/s11307-021-01658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the correlation of radiomic features in pelvic [2-deoxy-2-18F]fluoro-D-glucose positron emission tomography/magnetic resonance imaging and computed tomography ([18F]FDG PET/MRI and [18F]FDG PET/CT) in patients with primary cervical cancer (CCa). PROCEDURES Nineteen patients with histologically confirmed primary squamous cell carcinoma of the cervix underwent same-day [18F]FDG PET/MRI and PET/CT. Two nuclear medicine physicians performed a consensus reading in random order. Free-hand regions of interest covering the primary cervical tumors were drawn on PET, contrast-enhanced pelvic CT, and pelvic MR (T2 weighted and ADC) images. Several basic imaging features, standard uptake values (SUVmean, SUVmax, and SUVpeak), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and more advanced texture analysis features were calculated. Pearson's correlation test was used to assess the correlation between each pair of features. Features were compared between local and metastatic tumors, and their role in predicting metastasis was evaluated by receiver operating characteristic curves. RESULTS For a total of 101 extracted features, 1104/5050 pairs of features showed a significant correlation (ρ ≥ 0.70, p < 0.05). There was a strong correlation between 190/484 PET pairs of features from PET/MRI and PET/CT, 91/418 pairs of CT and PET from PET/CT, 79/418 pairs of T2 and PET from PET/MRI, and 50/418 pairs of ADC and PET from PET/MRI. Significant difference was seen between eight features in local and metastatic tumors including MTV, TLG, and entropy on PET from PET/CT; MTV and TLG on PET from PET/MRI; compactness and entropy on T2; and entropy on ADC images. CONCLUSIONS We demonstrated strong correlation of many extracted radiomic features between PET/MRI and PET/CT. Eight radiomic features calculated on PET/CT and PET/MRI were significantly different between local and metastatic CCa. This study paves the way for future studies to evaluate the diagnostic and predictive potential of radiomics that could guide clinicians toward personalized patients care.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA.,Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Madrid, Spain
| | - Barbara Juarez Amorim
- Division of Nuclear Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
| | - David Groshar
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Liran Domachevsky
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Hanna Bernstine
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Dan Stein
- Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Debra Gervais
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Nguyen NC, Beriwal S, Moon CH, D'Ardenne N, Mountz JM, Furlan A, Muthukrishnan A, Rangaswamy B. Diagnostic Value of FDG PET/MRI in Females With Pelvic Malignancy-A Systematic Review of the Literature. Front Oncol 2020; 10:519440. [PMID: 33123460 PMCID: PMC7571667 DOI: 10.3389/fonc.2020.519440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Hybrid imaging with F-18 fludeoxyglucose positron emission tomography/magnetic resonance imaging (FDG PET/MRI) has increasing clinical applications supplementing conventional ultrasound, CT, and MRI imaging as well as hybrid PET/CT imaging in assessing cervical, endometrial, and ovarian cancer. This article summarizes the existing literature and discusses the emerging role of hybrid PET/MRI in gynecologic malignancies. Thus, far, the published literature on the applications of FDG PET/MRI shows that it can have a significant impact on patient management by improving the staging of the cancers compared with PET/CT, influencing clinical decision and treatment strategy. For disease restaging, current literature indicates that PET/MRI performs equivalently to PET/CT. There appears to be a mild-moderate inverse correlation between standard-uptake-value (SUV) and apparent-diffusion-coefficient (ADC) values, which could be used to predict tumor grading and risk stratification. It remains to be seen as to whether multi-parametric PET/MRI imaging could prove valuable for prognostication and outcome. PET/MRI provides the opportunity for reduced radiation exposure, which is particularly relevant for a young female in need of multiple scans for treatment monitoring and follow-up. Fast acquisition protocols and optimized methods for attenuation correction are still evolving. Major limitations of PET/MRI remains such as suboptimal detection of small pulmonary nodules and lack of utility for radiation treatment planning, which pose an impediment in making PET/MRI a viable one-stop-shop imaging option to compete with PET/CT.
Collapse
Affiliation(s)
- Nghi Co Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sushil Beriwal
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas D'Ardenne
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Muthukrishnan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
7
|
Shih IL, Yen RF, Chen CA, Cheng WF, Chen BB, Chang YH, Cheng MF, Shih TTF. PET/MRI in Cervical Cancer: Associations Between Imaging Biomarkers and Tumor Stage, Disease Progression, and Overall Survival. J Magn Reson Imaging 2020; 53:305-318. [PMID: 32798280 DOI: 10.1002/jmri.27311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET)/MRI biomarkers have been shown to have prognostic significance in patients with cervical cancer. Their associations with progression-free survival (PFS) and overall survival (OS) merit further investigation. PURPOSE To evaluate the association between PET/MRI biomarkers and tumor stage, PFS, and OS in patients with cervical cancer. STUDY TYPE Prospective cohort study. POPULATION In all, 54 patients with newly diagnosed cervical cancer and measurable tumors (>1 cm) were included in the image analysis. FIELD STRENGTH/SEQUENCE 3.0T integrated PET/MRI including diffusion-weighted echo-planar imaging (b = 50 and 1000 s/mm2 ) and [18F]fluorodeoxyglucose PET. ASSESSMENT Two radiologists measured the minimum and mean apparent diffusion coefficient (ADCmin and ADCmean ), maximum standardized uptake value (SUVmax ), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumors. STATISTICAL TESTS A Mann-Whitney U-test was used to evaluate the association between the imaging biomarkers and tumor stage. A Cox proportional hazards model was used to assess the relationships between the imaging biomarkers and survival. RESULTS In advanced tumors (T ≥ 1b2, M1, stage ≥ IB3), ADCmin was significantly lower and MTV, TLG, MTV/ADCmin , and TLG/ADCmin were significantly higher (P values between <0.001 and 0.036). In N1 tumors, ADCmin was significantly lower and MTV and MTV/ADCmin were significantly higher (P values between 0.005 and 0.016). In survival analysis, SUVmax was an independent predictor of PFS (hazard ratio [HR] = 4.57, P < 0.05), and ADCmin was an independent predictor of OS (HR = 0.02, P < 0.05). In subgroup analysis of patients with different stages, MTV/ADCmin was a predictor of PFS in stage I disease (P = 0.003), ADCmin (P = 0.038), and MTV (P = 0.020) in stage II, SUVmax (P = 0.006), and TLG (P = 0.006) in stage IV; and ADCmin was a predictor of OS in stage III disease (P = 0.008). DATA CONCLUSION PET/MRI biomarkers of cervical cancer are associated with tumor stage and survival. SUVmax and ADCmin are independent predictors of PFS and OS, respectively. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- I-Lun Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rouh-Fang Yen
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Chang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Nguyen NC, Beriwal S, Moon CH, Furlan A, Mountz JM, Rangaswamy B. 18F-FDG PET/MRI Primary Staging of Cervical Cancer: A Pilot Study with PET/CT Comparison. J Nucl Med Technol 2020; 48:331-335. [PMID: 32709671 DOI: 10.2967/jnmt.120.247080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
We report our PET/MRI experience from a pilot study that compared the diagnostic performance of 18F-FDG PET/MRI versus PET/CT in staging of cervical cancer. Methods: Six adults with newly diagnosed cervical cancer underwent a single 18F-FDG injection with a dual-imaging protocol: standard-of-care PET/CT followed by research PET/MRI. The diagnostic interpretation and SUVmax for the 2 modalities were compared. Results: Both modalities detected all primary tumors (median size, 3.9 cm) and all 4 metastases present in 2 of the 6 patients (median size, 0.9 cm). PET/MRI provided greater diagnostic confidence than PET/CT and upstaged the disease in 4 patients. On the basis of the imaging findings alone, the additional information from PET/MRI would have led to a change in clinical management in 3 of 6 patients. The primary lesion showed a median SUV of 12.8 on PET/CT and 18.2 on PET/MRI (P = 0.03). SUVs, however, correlated strongly between the 2 modalities (ρ = 0.96, P < 0.001). Conclusion: Our pilot study supports the notion that PET/MRI has the potential to impact clinical decisions and treatment strategies in women with cervical cancer. Further studies are, however, warranted to define the value that PET/MRI adds to PET/CT.
Collapse
Affiliation(s)
- Nghi C Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | |
Collapse
|
9
|
Solid Indeterminate Nodules with a Radiological Stability Suggesting Benignity: A Texture Analysis of Computed Tomography Images Based on the Kurtosis and Skewness of the Nodule Volume Density Histogram. Pulm Med 2019; 2019:4071762. [PMID: 31687208 PMCID: PMC6800929 DOI: 10.1155/2019/4071762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background The number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid unnecessary invasive procedures. Objectives The present study evaluated solid indeterminate nodules with a radiological stability suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods A total of 100 chest CT scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. The kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms were classified into two basic patterns: peaks or plateaus. Results The mean (MEN) KUR values of the SINRSBs and malignant nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an area under the curve (AUC) of 0.709 (p < 0.0001). The MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. The ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (p < 0.0001). An analysis of the peak and plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions KUR, SKW, and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.
Collapse
|