1
|
Mahdi I, Imbimbo P, Ortaakarsu AB, Adhiambo Ochieng M, Ben Bakrim W, Drissi BE, Ibrahim MA, Abdelfattah MAO, Mahmoud MF, Monti DM, Sobeh M. Chemical profiling and dermatological and anti-aging properties of Syzygium jambos L. (Alston): evidence from molecular docking, molecular dynamics, and in vitro experiments. Front Mol Biosci 2024; 10:1331059. [PMID: 38250734 PMCID: PMC10797028 DOI: 10.3389/fmolb.2023.1331059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The phytoconstituents of the aqueous extract from Syzygium jambos L. (Alston) leaves were defined using HPLC-PDA-MS/MS and the antioxidant, anti-aging, antibacterial, and anti-biofilm activities of the extract were in silico and in vitro investigated. The antioxidant activities were performed using in vitro DPPH and FRAP assays as well as H2-DCFDA assay in HaCaT cells in which oxidative stress was induced by UVA radiation. Anti-aging activity was tested in vitro, using aging-related enzymes. The antibacterial, anti-biofilm and inhibitory effects on bacterial mobilities (swarming and swimming) were assessed against Pseudomonas aeruginosa. Results showed that S. jambos aqueous extract contained 28 phytochemicals belonging to different metabolite classes, mainly phenolic acids, gallic acid derivatives, flavonoids, and ellagitannins. Mineral content analysis showed that S. jambos leaves contained moderate amounts of nitrogen, potassium, manganese, magnesium, and zinc, relatively low amounts of phosphorus and copper, and high concentration of calcium and iron. The extract displayed strong antioxidant activities in vitro and inhibited UVA-induced oxidative stress in HaCaT cells. Docking the major compounds identified in the extract into the four main protein targets involved in skin aging revealed an appreciable inhibitory potential of these compounds against tyrosinase, elastase, hyaluronidase, and collagenase enzymes. Moreover, molecular dynamic simulations were adopted to confirm the binding affinity of some selected compounds towards the target enzymes. The extract exhibited pronounced in vitro anti-aging effects, compared to kojic acid and quercetin (the reference compounds). It also inhibited the growth of P. aeruginosa, counteracted its ability to form biofilm, and impeded its swarming and swimming mobilities. Altogether, these findings strongly propose S. jambos leaves as a promising source of bioactive metabolites for the development of natural cosmeceutical and dermatological agents.
Collapse
Affiliation(s)
- Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Napoli, Italy
| | | | - Melvin Adhiambo Ochieng
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Badr Eddine Drissi
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | | | | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Napoli, Italy
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
2
|
de Jesus GS, Silva Trentin D, Barros TF, Ferreira AMT, de Barros BC, de Oliveira Figueiredo P, Garcez FR, Dos Santos ÉL, Micheletti AC, Yoshida NC. Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus. BMC Complement Med Ther 2023; 23:374. [PMID: 37872494 PMCID: PMC10594757 DOI: 10.1186/s12906-023-04147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Given the rising occurrence of antibiotic resistance due to the existence and ongoing development of resistant bacteria and phenotypes, the identification of new treatments and sources of antimicrobial agents is of utmost urgency. An important strategy for tackling bacterial resistance involves the utilization of drug combinations, and natural products derived from plants hold significant potential as a rich source of bioactive compounds that can act as effective adjuvants. This study, therefore, aimed to assess the antibacterial potential and the chemical composition of Miconia albicans, a Brazilian medicinal plant used to treat various diseases. METHODS Ethanolic extracts from leaves and stems of M. albicans were obtained and subsequently partitioned to give the corresponding hexane, chloroform, ethyl acetate, and hydromethanolic phases. All extracts and phases had their chemical constitution investigated by HPLC-DAD-MS/MS and GC-MS and were assessed for their antibiofilm and antimicrobial efficacy against Staphylococcus aureus. Furthermore, their individual effects and synergistic potential in combination with antibiotics were examined against clinical strains of both S. aureus and Acinetobacter baumannii. In addition, 10 isolated compounds were obtained from the leaves phases and used for confirmation of the chemical profiles and for antibacterial assays. RESULTS Based on the chemical profile analysis, 32 compounds were successfully or tentatively identified, including gallic and ellagic acid derivatives, flavonol glycosides, triterpenes and pheophorbides. Extracts and phases obtained from the medicinal plant M. albicans demonstrated synergistic effects when combined with the commercial antibiotics ampicillin and ciprofloxacin, against multi-drug resistant bacteria S. aureus and A. baumannii, restoring their antibacterial efficacy. Extracts and phases also exhibited antibiofilm property against S. aureus. Three key compounds commonly found in the samples, namely gallic acid, quercitrin, and corosolic acid, did not exhibit significant antibacterial activity when assessed individually or in combination with antibiotics against clinical bacterial strains. CONCLUSIONS Our findings reveal that M. albicans exhibits remarkable adjuvant potential for enhancing the effectiveness of antimicrobial drugs against resistant bacteria.
Collapse
Affiliation(s)
- Genilson Silva de Jesus
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Thayná Fernandes Barros
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Bruna Castro de Barros
- Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Patrícia de Oliveira Figueiredo
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Fernanda Rodrigues Garcez
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Érica Luiz Dos Santos
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Ana Camila Micheletti
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| | - Nidia Cristiane Yoshida
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| |
Collapse
|
3
|
Ali SK, Radu S, Mahmud @ Ab Rashid NK, Rukayadi Y. Antimicrobial activity of jambu mawar [Syzygium jambos (L.) Alston] leaf extract against foodborne pathogens and spoilage microorganisms. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present work evaluated the antimicrobial potential of the ethanolic extract of jambu mawar [Syzygium jambos (L.) Alston] leaves against various foodborne pathogens and spoilage microorganisms via the disc diffusion assay (DDS) and the time-kill curve assay. These microorganisms included bacteria (Klebsiella pneumoniae ATCC13773, Listeria monocytogenes ATCC19112, Proteus mirabilis ATCC21100, Pseudomonas aeruginosa ATCC9027, Staphylococcus aureus ATCC29737, and Vibrio parahaemolyticus ATCC17802), yeasts (Candida albicans ATCC10231, C. krusei ATCC32196, C. glabrata ATCC2001, and C. parapsilosis ATCC22019), and moulds (Aspergillus fumigatus ATCC26430, A. niger ATCC9029, Rhizopus oligosporus ATCC22959, and R. oryzae ATCC22580). The inhibition zone of DDA ranged from 7.00 ± 0.23 to 10.25 ± 0.29 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal (MBC/MFC) of the ethanolic leaf extract were obtained at the concentrations of 0.01 to 2.50 and 0.01 to 5.00 mg/mL, respectively. The time-kill curve assay showed that except for P. mirabilis, other microorganisms were completely killed at MIC concentrations ranging from 0.5 to 4× MIC. In comparison, P. mirabilis showed a growth reduction of > 3 log10 CFU/mL for 4 h. Meanwhile, the conidial germination of A. fumigatus was fully inhibited at 0.5× MIC. Though not fully inhibited, the ethanolic leaf extract significantly reduced the conidial germination of A. niger, R. oryzae, and R. oligosporus to 7.0, 7.0, and 11.0%, respectively. Overall, the ethanolic leaf extract of S. jambos exhibited antimicrobial activity against foodborne pathogens and spoilage microorganisms.
Collapse
|
4
|
Ochieng MA, Ben Bakrim W, Bitchagno GTM, Mahmoud MF, Sobeh M. Syzygium jambos L. Alston: An Insight Into its Phytochemistry, Traditional Uses, and Pharmacological Properties. Front Pharmacol 2022; 13:786712. [PMID: 35177986 PMCID: PMC8845460 DOI: 10.3389/fphar.2022.786712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Medicinal plants have been used since ancient times for human healthcare as drugs, spices, and food additives. The progress in technology and medicine observed, the last decades, has improved the quality of life and healthcare but with worrisome drawbacks. Side effects caused by synthetic drugs for instance originate sometimes irreversible health disorders. Natural substances, in contrast, are biologically and environmentally friendly. Syzygium jambos L. (Alston) also known as rose apple conveys a long history as essential traditional medicine with a broad spectrum of application in various cultures. The plant discloses a diverse group of secondary metabolites and extracts that displayed major susceptibilities towards various health concerns especially stress-related and inflammatory diseases. Despite a rich literature about the plant, the chemistry and biology of S. jambos have not been comprehensively reviewed yet. Accordingly, we present herein a literature survey of rose apple which aims to draw the chemical identity of the plant and establish a consistent discussion on the respective biological application of plant extracts and their corresponding traditional uses. The present work could provide a scientific basis for future studies and necessary information for further investigations of new drug discovery.
Collapse
Affiliation(s)
- Melvin Adhiambo Ochieng
- School of Agriculture, Fertilization, and Environmental Sciences (ESAFE), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | | | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
5
|
Qiu J, Chen X, Liang P, Zhang L, Xu Y, Gong M, Qiu X, Zhang J, Xu W. Integrating approach to discover novel bergenin derivatives and phenolics with antioxidant and anti-inflammatory activities from bio-active fraction of Syzygium brachythyrsum. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Demgne OMF, Damen F, Fankam AG, Guefack MGF, Wamba BEN, Nayim P, Mbaveng AT, Bitchagno GTM, Tapondjou LA, Penlap VB, Tane P, Efferth T, Kuete V. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114257. [PMID: 34062249 DOI: 10.1016/j.jep.2021.114257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infections due to multidrug-resistant (MDR) bacteria constitute a real problem in the public health worldwide. Hypericum roeperianum Schimp. ex A. Rich (Hypericaceae) is used traditionally for treatment of various ailments such as abdominal pains, constipation, diarrhea, indigestion, nausea, and bacterial diseases. AIM OF THE STUDY This study was aimed at investigating the antibacterial and antibiotic-modifying activity of the crude methanol extracts (HRB), ethyl-acetate soluble fraction (HRBa), residual material (HRBb), and 11 compounds from the bark of Hypericum roeperianum against multi-drug resistant (MDR) bacteria expressing active efflux pumps. MATERIALS AND METHODS The antibacterial activity, the efflux pump effect using the efflux pump inhibitor (EPI), phenylalanine-arginine-ß-naphthylamide (PAβN), as well as the antibiotic-modifying activity of samples were determined using the broth micro-dilution method. Spectrophotometric methods were used to evaluate the effects of HRB and 8,8-bis(dihydroconiferyl) diferulate (11) on bacterial growth, and bacterial membrane damage, whereas follow-up of the acidification of the bacterial culture was used to study their effects on bacteria proton-ATPase pumps. RESULTS The crude extract (HRB), HRBa, and HRBb had selective antibacterial activity with MICs ranging from 16 to 512 μg/mL. Phytochemical 11 displayed the best antibacterial activity (0.5 ≤ MIC ≤ 2 μg/mL). The activity of HRB and 11 in the presence of EPI significantly increased on the tested bacteria strains (up to 32-fold). The activity of cloxacillin (CLO), doxycycline (DOX), and tetracycline (TET), was considerably improved (up to 64-fold) towards the multidrug-resistant Enterobacter aerogenes EA-CM64 strain. The crude extract (HRB) and 11 induced the leakage of bacterial intracellular components and inhibited the proton-ATPase pumps. CONCLUSIONS The crude extract (HRB) and 8,8-bis(dihydroconiferyl)diferulate from the bark of Hypericum roeperianum are good antibacterial candidates that deserve further investigations to achieve antibacterial drugs to fight infections involving MDR bacteria.
Collapse
Affiliation(s)
- Olive Monique F Demgne
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
| | - Francois Damen
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Aimé G Fankam
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Michel-Gael F Guefack
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Brice E N Wamba
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Paul Nayim
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Armelle T Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Gabin T M Bitchagno
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | | | - Veronique B Penlap
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
| | - Pierre Tane
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
7
|
An Efflux Pumps Inhibitor Significantly Improved the Antibacterial Activity of Botanicals from Plectranthus glandulosus towards MDR Phenotypes. ScientificWorldJournal 2021; 2021:5597524. [PMID: 34054358 PMCID: PMC8131149 DOI: 10.1155/2021/5597524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023] Open
Abstract
Bacterial multidrug resistance causes many therapeutic failures, making it more difficult to fight against bacterial diseases. This study aimed to investigate the antibacterial activity of extract, fractions, and phytochemicals from Plectranthus glandulosus (Lamiaceae) against multidrug-resistant (MDR) Gram-negative phenotypes expressing efflux pumps. The crude extract after extraction was subjected to column chromatography, and the structures of the isolated compounds were determined using spectrometric and spectroscopic techniques. Antibacterial assays of samples alone and in the presence of an efflux pump inhibitor (phenylalanine-arginine β-naphthylamide, PAβN) were carried out using the broth microdilution method. The phytochemical study of P. glandulosus plant extract afforded seven major fractions (A-G) which lead to the isolation of seventeen known compounds. The ethanol extract of P. glandulosus was not active at up to 1024 μg/mL, whereas its fractions showed MICs varying from 32 to 512 μg/mL on the studied bacteria. Fraction C of P. glandulosus showed the lowest MIC (32 μg/mL) on E. coli ATCC8739 strain. Fraction D presented the highest activity spectrum by inhibiting the growth of 90% (9/10) of the studied bacteria. The presence of PAβN has improved the activity of extract and all fractions. Overall, the tested phytochemicals showed low activity against the studied bacteria. The overall results obtained in this study show that some fractions from P. glandulosus, mainly fractions C and D, should be investigated more for their possible use to fight against MDR bacteria.
Collapse
|