1
|
Kong Y, Cao L, Wang J, Zhuang J, Xie F, Zuo C, Huang Q, Shi K, Rominger A, Li M, Wu P, Guan Y, Ni R. In vivo reactive astrocyte imaging using [ 18F]SMBT-1 in tauopathy and familial Alzheimer's disease mouse models: A multi-tracer study. J Neurol Sci 2024; 462:123079. [PMID: 38878650 DOI: 10.1016/j.jns.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Reactive astrocytes play an important role in the development of Alzheimer's disease and primary tauopathies. Here, we aimed to investigate the relationships between reactive astrocytes. Microgliosis and glucose metabolism with Tau and amyloid beta pathology by using multi-tracer imaging in widely used tauopathy and familial Alzheimer's disease mouse models. RESULTS Positron emission tomography imaging using [18F]PM-PBB3 (tau), [18F]florbetapir (amyloid-beta), [18F]SMBT-1 (monoamine oxidase-B), [18F]DPA-714 (translocator protein) and [18F]fluorodeoxyglucose was carried out in 3- and 7-month-old rTg4510 tau mice, 5 × FAD familial Alzheimer's disease mice and wild-type mice. Immunofluorescence staining was performed to validate the pathological distribution in the mouse brain after in vivo imaging. We found increased regional levels of [18F]PM-PBB3, [18F]SMBT-1, and [18F]DPA-714 and hypoglucose metabolism in the brains of 7-month-old rTg4510 mice compared to age-matched wild-type mice. Increased [18F]SMBT-1 uptake was observed in the brains of 3, 7-month-old 5 × FAD mice, with elevated regional [18F]florbetapir and [18F]DPA-714 uptakes in the brains of 7-month-old 5 × FAD mice, compared to age-matched wild-type mice. Positive correlations were shown between [18F]SMBT-1 and [18F]PM-PBB3, [18F]DPA-714 and [18F]PM-PBB3 in rTg4510 mice, and between [18F]florbetapir and [18F]DPA-714 SUVRs in 5 × FAD mice. CONCLUSION In summary, these findings provide in vivo evidence that reactive astrocytes, microglial activation, and cerebral hypoglucose metabolism are associated with tau and amyloid pathology development in animal models of tauopathy and familial Alzheimer's disease.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China; Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Jiao Wang
- Lab of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Lab of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland; Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland; Inst. Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Fatmi MK, Wang H, Slotabec L, Wen C, Seale B, Zhao B, Li J. Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer's disease by activated protein C. Aging (Albany NY) 2024; 16:3137-3159. [PMID: 38385967 PMCID: PMC10929801 DOI: 10.18632/aging.205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Single-Cell RNA sequencing reveals changes in cell population in Alzheimer's disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice. The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.
Collapse
Affiliation(s)
- Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Maroli N. Aquaporin-4 Mediated Aggregation of Alzheimer's Amyloid β-Peptide. ACS Chem Neurosci 2023; 14:2683-2698. [PMID: 37486638 DOI: 10.1021/acschemneuro.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Clearance of Alzheimer's amyloid oligomers from the brain is crucial for preventing cell toxicity. Dementia complications arise as a result of apoptosis, which is caused by peptide plaques on the lipid surface of cells. Here, we employed all-atom and coarse-grained molecular dynamics simulations to investigate the aggregation of amyloid peptides at the lipid surface and the role of aquaporin-4 (AQP4) in facilitating peptide clearance from astrocytes. The network of protein-protein interactions through text mining revealed that the expression of AQP4 and amyloid aggregation were strongly correlated. It has also been revealed that the role of aquaporins in the etiology of Alzheimer's disease involves several interconnected proteins and pathways. The nature of aggregation at the surface of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was revealed by the interaction of amyloid oligomers. The membrane-bound pore region of AQP4 interacts with the peptide and slows its aggregation. This interaction maintains the helical content of the peptide while lowering its toxicity at the lipid surface. The hydrophobicity of the peptide also decreased because of these interactions, which may help in the removal of the peptide from astrocytes. Long-term coarse-grained MD simulations demonstrated different features of oligomer aggregation at the surface and strong oligomer attraction to AQP4, which inhibited aggregation. Additionally, the water dynamics of aquaporins demonstrate how the selectivity filter is broken to disrupt water flow. Our findings also provide insight into the physiological alterations in brain tissue associated with Alzheimer's disease, including water retention and increased water flow in the CSF. Furthermore, in vitro thioflavin fluorescence spectroscopy revealed a slower aggregation of the peptide in the presence of AQP4.
Collapse
Affiliation(s)
- Nikhil Maroli
- Computational Biology Division, DRDO Center for Life Science, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
4
|
Chen C, Wei J, Ma X, Xia B, Shakir N, Zhang JK, Zhang L, Cui Y, Ferguson D, Qiu S, Bai F. Disrupted Maturation of Prefrontal Layer 5 Neuronal Circuits in an Alzheimer's Mouse Model of Amyloid Deposition. Neurosci Bull 2023; 39:881-892. [PMID: 36152121 PMCID: PMC10264337 DOI: 10.1007/s12264-022-00951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022] Open
Abstract
Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.
Collapse
Affiliation(s)
- Chang Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jessica K Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Le Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
5
|
Cho E, Jeon SJ, Jeon J, Yi JH, Kwon H, Kwon HJ, Kwon KJ, Moon M, Shin CY, Kim DH. Phyllodulcin improves hippocampal long-term potentiation in 5XFAD mice. Biomed Pharmacother 2023; 161:114511. [PMID: 36913892 DOI: 10.1016/j.biopha.2023.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known neurodegenerative brain disease, and no curative treatment has yet been developed. The main symptoms include various brain lesions, caused by amyloid β (Aβ) aggregation, and cognitive decline. Therefore, it is believed that substances that control Aβ will inhibit the onset of Alzheimer's disease and slow its progression. In this study, the effect of phyllodulcin, a major component of hydrangea, on Aβ aggregation and brain pathology in an animal model of AD was studied. Phyllodulcin inhibited the aggregation of Aβ and decomposed the pre-aggregated Aβ in a concentration-dependent manner. In addition, it inhibited the cytotoxicity of Aβ aggregates. Oral administration of phyllodulcin improved Aβ-induced memory impairments in normal mice, reduced Aβ deposition in the hippocampus, inhibited the activation of microglia and astrocytes, and improved synaptic plasticity in 5XFAD mice. These results suggest that phyllodulcin may be a candidate for the treatment of AD.
Collapse
Affiliation(s)
- Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Hyun-Ji Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Baik K, Jeon S, Park M, Lee YG, Lee PH, Sohn YH, Ye BS. Comparison Between 18F-Florapronol and 18F-Florbetaben Imaging in Patients With Cognitive Impairment. J Clin Neurol 2023; 19:260-269. [PMID: 36775276 PMCID: PMC10169926 DOI: 10.3988/jcn.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND AND PURPOSE To determine the imaging characteristics and cutoff value of 18F-florapronol (FC119S) quantitative analysis for detecting β-amyloid positivity and Alzheimer's disease (AD), we compared the findings of FC119S and 18F-florbetaben (FBB) positron- emission tomography (PET) in patients with cognitive impairment. METHODS We prospectively enrolled 35 patients with cognitive impairment who underwent FBB-PET, FC119S-PET, and brain magnetic resonance imaging. We measured global and vertex-wise standardized uptake value ratios (SUVRs) using a surface-based method with the cerebellar gray matter as reference. Optimal global FC119S SUVR cutoffs were determined using receiver operating characteristic curves for β-amyloid positivity based on the global FBB SUVR of 1.478 and presence of AD, respectively. We evaluated the global and vertex-wise SUVR correlations between the two tracers. In addition, we performed correlation analysis for global or vertex-wise SUVR of each tracer with the vertex-wise cortical thicknesses. RESULTS The optimal global FC119S SUVR cutoff value was 1.385 both for detecting β-amyloid positivity and for detecting AD. Based on the global SUVR cutoff value of each tracer, 32 (91.4%) patients had concordant β-amyloid positivity. The SUVRs of FC119S and FBB had strong global (r=0.72) and vertex-wise (r>0.7) correlations in the overall cortices, except for the parietal and temporal cortices (0.4<r<0.7). The FC119S SUVR had significant negative vertex-wise correlations with cortical thicknesses in the posterior cingulate, anterior cingulate, parietal, posterior temporal, and occipital cortices. CONCLUSIONS Quantitative FC119S-PET analysis provided reliable information for detecting β-amyloid deposition and the presence of AD.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Chung-Ang University College of Medicine and Graduate School of Medicine, Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Early diagnosis and treatment of Alzheimer's disease by targeting toxic soluble Aβ oligomers. Proc Natl Acad Sci U S A 2022; 119:e2210766119. [PMID: 36442093 PMCID: PMC9894226 DOI: 10.1073/pnas.2210766119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient soluble oligomers of amyloid-β (Aβ) are toxic and accumulate early prior to insoluble plaque formation and cognitive impairment in Alzheimer's disease (AD). Synthetic cyclic D,L-α-peptides (e.g., 1) self-assemble into cross β-sheet nanotubes, react with early Aβ species (1-3 mers), and inhibit Aβ aggregation and toxicity in stoichiometric concentrations, in vitro. Employing a semicarbazide as an aza-glycine residue with an extra hydrogen-bond donor to tune nanotube assembly and amyloid engagement, [azaGly6]-1 inhibited Aβ aggregation and toxicity at substoichiometric concentrations. High-resolution NMR studies revealed dynamic interactions between [azaGly6]-1 and Aβ42 residues F19 and F20, which are pivotal for early dimerization and aggregation. In an AD mouse model, brain positron emission tomography (PET) imaging using stable 64Cu-labeled (aza)peptide tracers gave unprecedented early amyloid detection in 44-d presymptomatic animals. No tracer accumulation was detected in the cortex and hippocampus of 44-d-old 5xFAD mice; instead, intense PET signal was observed in the thalamus, from where Aβ oligomers may spread to other brain parts with disease progression. Compared with standard 11C-labeled Pittsburgh compound-B (11C-PIB), which binds specifically fibrillar Aβ plaques, 64Cu-labeled (aza)peptide gave superior contrast and uptake in young mouse brain correlating with Aβ oligomer levels. Effectively crossing the blood-brain barrier (BBB), peptide 1 and [azaGly6]-1 reduced Aβ oligomer levels, prolonged lifespan of AD transgenic Caenorhabditis elegans, and abated memory and behavioral deficits in nematode and murine AD models. Cyclic (aza)peptides offer novel promise for early AD diagnosis and therapy.
Collapse
|
8
|
Tsui KC, Roy J, Chau SC, Wong KH, Shi L, Poon CH, Wang Y, Strekalova T, Aquili L, Chang RCC, Fung ML, Song YQ, Lim LW. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:964336. [PMID: 35966777 PMCID: PMC9371463 DOI: 10.3389/fnagi.2022.964336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis.
Collapse
Affiliation(s)
- Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lei Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingyi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Normal Physiology and Laboratory of Psychiatric Neurobiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA, Australia
| | - Raymond Chuen-Chung Chang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Man-Lung Fung,
| | - You-qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- You-qiang Song,
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Lee Wei Lim,
| |
Collapse
|
9
|
MicroPET Imaging Assessment of Brain Tau and Amyloid Deposition in 6 × Tg Alzheimer’s Disease Model Mice. Int J Mol Sci 2022; 23:ijms23105485. [PMID: 35628296 PMCID: PMC9146140 DOI: 10.3390/ijms23105485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFT). Amyloid beta (Aβ) and tau imaging are widely used for diagnosing and monitoring AD in clinical settings. We evaluated the pathology of a recently developed 6 × Tg − AD (6 × Tg) mouse model by crossbreeding 5 × FAD mice with mice expressing mutant (P301L) tau protein using micro-positron emission tomography (PET) image analysis. PET studies were performed in these 6 × Tg mice using [18F]Flutemetamol, which is an amyloid PET radiotracer; [18F]THK5351 and [18F]MK6240, which are tau PET radiotracers; moreover, [18F]DPA714, which is a translocator protein (TSPO) radiotracer, and comparisons were made with age-matched mice of their respective parental strains. We compared group differences in standardized uptake value ratio (SUVR), kinetic parameters, biodistribution, and histopathology. [18F]Flutemetamol images showed prominent cortical uptake and matched well with 6E10 staining images from 2-month-old 6 × Tg mice. [18F]Flutemetamol images showed a significant correlation with [18F]DPA714 in the cortex and hippocampus. [18F]THK5351 images revealed prominent hippocampal uptake and matched well with AT8 immunostaining images in 4-month-old 6 × Tg mice. Moreover, [18F]THK5351 images were confirmed using [18F]MK6240, which revealed significant correlations in the cortex and hippocampus. Uptake of [18F]THK5351 or [18F]MK6240 was highly correlated with [18F]Flutemetamol in 4-month-old 6 × Tg mice. In conclusion, PET imaging revealed significant age-related uptake of Aβ, tau, and TSPO in 6 × Tg mice, which was highly correlated with age-dependent pathology.
Collapse
|
10
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
11
|
Bouter C, Irwin C, Franke TN, Beindorff N, Bouter Y. Quantitative Brain Positron Emission Tomography in Female 5XFAD Alzheimer Mice: Pathological Features and Sex-Specific Alterations. Front Med (Lausanne) 2021; 8:745064. [PMID: 34901060 PMCID: PMC8661108 DOI: 10.3389/fmed.2021.745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Successful back-translating clinical biomarkers and molecular imaging methods of Alzheimer's disease (AD), including positron emission tomography (PET), are very valuable for the evaluation of new therapeutic strategies and increase the quality of preclinical studies. 18F-Fluorodeoxyglucose (FDG)–PET and 18F-Florbetaben–PET are clinically established biomarkers capturing two key pathological features of AD. However, the suitability of 18F-FDG– and amyloid–PET in the widely used 5XFAD mouse model of AD is still unclear. Furthermore, only data on male 5XFAD mice have been published so far, whereas studies in female mice and possible sex differences in 18F-FDG and 18F-Florbetaben uptake are missing. The aim of this study was to evaluate the suitability of 18F-FDG– and 18F-Florbetaben–PET in 7-month-old female 5XFAD and to assess possible sex differences between male and female 5XFAD mice. We could demonstrate that female 5XFAD mice showed a significant reduction in brain glucose metabolism and increased cerebral amyloid deposition compared with wild type animals, in accordance with the pathology seen in AD patients. Furthermore, we showed for the first time that the hypometabolism in 5XFAD mice is gender-dependent and more pronounced in female mice. Therefore, these results support the feasibility of small animal PET imaging with 18F-FDG- and 18F-Florbetaben in 5XFAD mice in both, male and female animals. Moreover, our findings highlight the need to account for sex differences in studies working with 5XFAD mice.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
12
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
13
|
Rejc L, Gómez-Vallejo V, Joya A, Moreno O, Egimendia A, Castellnou P, Ríos-Anglada X, Cossío U, Baz Z, Passannante R, Tobalina-Larrea I, Ramos-Cabrer P, Giralt A, Sastre M, Capetillo-Zarate E, Košak U, Knez D, Gobec S, Marder M, Martin A, Llop J. Longitudinal evaluation of a novel BChE PET tracer as an early in vivo biomarker in the brain of a mouse model for Alzheimer disease. Am J Cancer Res 2021; 11:6542-6559. [PMID: 33995675 PMCID: PMC8120209 DOI: 10.7150/thno.54589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: The increase in butyrylcholinesterase (BChE) activity in the brain of Alzheimer disease (AD) patients and animal models of AD position this enzyme as a potential biomarker of the disease. However, the information on the ability of BChE to serve as AD biomarker is contradicting, also due to scarce longitudinal studies of BChE activity abundance. Here, we report 11C-labeling, in vivo stability, biodistribution, and longitudinal study on BChE abundance in the brains of control and 5xFAD (AD model) animals, using a potent BChE selective inhibitor, [11C]4, and positron emission tomography (PET) in combination with computerised tomography (CT). We correlate the results with in vivo amyloid beta (Aβ) deposition, longitudinally assessed by [18F]florbetaben-PET imaging. Methods: [11C]4 was radiolabelled through 11C-methylation. Metabolism studies were performed on blood and brain samples of female wild type (WT) mice. Biodistribution studies were performed in female WT mice using dynamic PET-CT imaging. Specific binding was demonstrated by ex vivo and in vivo PET imaging blocking studies in female WT and 5xFAD mice at the age of 7 months. Longitudinal PET imaging of BChE was conducted in female 5xFAD mice at 4, 6, 8, 10 and 12 months of age and compared to age-matched control animals. Additionally, Aβ plaque distribution was assessed in the same mice using [18F]florbetaben at the ages of 2, 5, 7 and 11 months. The results were validated by ex vivo staining of BChE at 4, 8, and 12 months and Aβ at 12 months on brain samples. Results: [11C]4 was produced in sufficient radiochemical yield and molar activity for the use in PET imaging. Metabolism and biodistribution studies confirmed sufficient stability in vivo, the ability of [11C]4 to cross the blood brain barrier (BBB) and rapid washout from the brain. Blocking studies confirmed specificity of the binding. Longitudinal PET studies showed increased levels of BChE in the cerebral cortex, hippocampus, striatum, thalamus, cerebellum and brain stem in aged AD mice compared to WT littermates. [18F]Florbetaben-PET imaging showed similar trend of Aβ plaques accumulation in the cerebral cortex and the hippocampus of AD animals as the one observed for BChE at ages 4 to 8 months. Contrarily to the results obtained by ex vivo staining, lower abundance of BChE was observed in vivo at 10 and 12 months than at 8 months of age. Conclusions: The BChE inhibitor [11C]4 crosses the BBB and is quickly washed out of the brain of WT mice. Comparison between AD and WT mice shows accumulation of the radiotracer in the AD-affected areas of the brain over time during the early disease progression. The results correspond well with Aβ accumulation, suggesting that BChE is a promising early biomarker for incipient AD.
Collapse
|
14
|
Majumdar S, Klatt D. Longitudinal study of sub-regional cerebral viscoelastic properties of 5XFAD Alzheimer's disease mice using multifrequency MR elastography. Magn Reson Med 2021; 86:405-414. [PMID: 33604900 DOI: 10.1002/mrm.28709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To study sub-regional, longitudinal changes occurring inside brains of 5XFAD mice, an Alzheimer's disease (AD) model, based on viscoelastic parameters derived using MR elastography and their spatial variation. METHODS Female 5XFAD and non-transgenic B6SJLF1/J mice as controls (n = 9 for both groups) were used for the study. Scans were performed inside a 9.4T preclinical MRI scanner using SampLe Interval Modulation-magnetic resonance elastography (SLIM-MRE). Experiments were performed at ages 2, 4, and 6 mo, and by using three actuation frequencies: 900, 1000, and 1100 Hz. Multifrequency dual elasto-visco (MDEV) reconstruction was used to combine 3D multifrequency MRE data and calculate magnitude G ∗ , and phase angle φ, of the complex shear modulus G ∗ . Mean values were measured for the overall brain and sub-regions associated with the early onset of AD, to check for the effect of aging and mouse model. Spatial coefficient of variation (CV) of both parameters across different age-groups were analyzed. RESULTS G ∗ and φ values reduced with age for overall brain in 5XFAD mice with significant difference in mean G ∗ between 5XFAD and control mice at 6 mo (P = .029). Analyzing values from the hippocampal region highlighted drop in mean G ∗ and φ values. The CV of G ∗ inside hippocampus enabled differentiation at 4 mo with it being significantly lower in 5XFAD mice (P = .0007). CONCLUSION Multifrequency 3D MRE revealed longitudinal viscoelastic changes in 5XFAD mice and the CV of G ∗ in brain sub-regions may qualify as biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Shreyan Majumdar
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
15
|
Oh SJ, Lee HJ, Jeong YJ, Nam KR, Kang KJ, Han SJ, Lee KC, Lee YJ, Choi JY. Evaluation of the neuroprotective effect of taurine in Alzheimer's disease using functional molecular imaging. Sci Rep 2020; 10:15551. [PMID: 32968166 PMCID: PMC7511343 DOI: 10.1038/s41598-020-72755-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, but therapeutic treatment options are limited. Taurine has been reported to have neuroprotective properties against dementia, including AD. The present study aimed to investigate the treatment effect of taurine in AD mice by functional molecular imaging. To elucidate glutamate alterations by taurine, taurine was administered to 5xFAD transgenic mice from 2 months of age, known to apear amyloid deposition. Then, we performed glutamate positron emission tomography (PET) imaging studies for three groups (wild-type, AD, and taurine-treated AD, n = 5 in each group). As a result, brain uptake in the taurine-treated AD group was 31-40% higher than that in the AD group (cortex: 40%, p < 0.05; striatum: 32%, p < 0.01; hippocampus: 36%, p < 0.01; thalamus: 31%, p > 0.05) and 3-14% lower than that in the WT group (cortex: 10%, p > 0.05; striatum: 15%, p > 0.05; hippocampus: 14%, p > 0.05; thalamus: 3%, p > 0.05). However, we did not observe differences in Aβ pathology between the taurine-treated AD and AD groups in immunohistochemistry experiments. Our results reveal that although taurine treatment did not completely recover the glutamate system, it significantly increased metabolic glutamate receptor type 5 brain uptake. Therefore, taurine has therapeutic potential against AD.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ye Ji Jeong
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea.
| |
Collapse
|
16
|
Franke TN, Irwin C, Bayer TA, Brenner W, Beindorff N, Bouter C, Bouter Y. In vivo Imaging With 18F-FDG- and 18F-Florbetaben-PET/MRI Detects Pathological Changes in the Brain of the Commonly Used 5XFAD Mouse Model of Alzheimer's Disease. Front Med (Lausanne) 2020; 7:529. [PMID: 33043029 PMCID: PMC7522218 DOI: 10.3389/fmed.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Imaging biomarkers of Alzheimer's disease (AD) that are able to detect molecular changes in vivo and transgenic animal models mimicking AD pathologies are essential for the evaluation of new therapeutic strategies. Positron-emission tomography (PET) using either 18F-Fluorodeoxyglucose (18F-FDG) or amyloid-tracers is a well-established, non-invasive tool in the clinical diagnostics of AD assessing two major pathological hallmarks. 18F-FDG-PET is able to detect early changes in cerebral glucose metabolism and amyloid-PET shows cerebral amyloid load. However, the suitability of 18F-FDG- and amyloid-PET in the widely used 5XFAD mouse model of AD is unclear as only a few studies on the use of PET biomarkers are available showing some conflicting results. The aim of this study was the evaluation of 18F-FDG-PET and amyloid-PET in 5XFAD mice in comparison to neurological deficits and neuropathological changes. Seven- and 12-month-old male 5XFAD mice showed a significant reduction in brain glucose metabolism in 18F-FDG-PET and amyloid-PET with 18F-Florbetaben demonstrated an increased cerebral amyloid deposition (n = 4-6 per group). Deficits in spatial reference memory were detected in 12-month-old 5XFAD mice in the Morris Water Maze (n = 10-12 per group). Furthermore, an increased plaque load and gliosis could be proven immunohistochemically in 5XFAD mice (n = 4-6 per group). PET biomarkers 18F-FDG and 18F-Florbetaben detected cerebral hypometabolism and increased plaque load even before the onset of severe memory deficits. Therefore, the 5XFAD mouse model of AD is well-suited for in vivo monitoring of AD pathologies and longitudinal testing of new therapeutic approaches.
Collapse
Affiliation(s)
- Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
17
|
Hybrid PET/MRI enables high-spatial resolution, quantitative imaging of amyloid plaques in an Alzheimer's disease mouse model. Sci Rep 2020; 10:10379. [PMID: 32587315 PMCID: PMC7316864 DOI: 10.1038/s41598-020-67284-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of PET probes for amyloid plaques and neurofibrillary tangles, hallmarks of Alzheimer disease (AD), enables monitoring of pathology in AD mouse models. However, small-animal PET imaging is limited by coarse spatial resolution. We have installed a custom-fabricated PET insert into our small-animal MRI instrument and used PET/MRI hybrid imaging to define regions of amyloid vulnerability in 5xFAD mice. We compared fluorine-18 [18F]-Florbetapir uptake in the 5xFAD brain by dedicated small-animal PET/MRI and PET/CT to validate the quantitative measurement of PET/MRI. Next, we used PET/MRI to define uptake in six brain regions. As expected, uptake was comparable to wild-type in the cerebellum and elevated in the cortex and hippocampus, regions implicated in AD. Interestingly, uptake was highest in the thalamus, a region often overlooked in AD studies. Development of small-animal PET/MRI enables tracking of brain region-specific pathology in mouse models, which may prove invaluable to understanding AD progression and therapeutic development.
Collapse
|
18
|
Weible AP, Stebritz AJ, Wehr M. 5XFAD mice show early-onset gap encoding deficits in the auditory cortex. Neurobiol Aging 2020; 94:101-110. [PMID: 32599514 DOI: 10.1016/j.neurobiolaging.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
Early detection will be crucial for effective treatment or prevention of Alzheimer's disease. The identification and validation of early, noninvasive biomarkers is therefore key to avoiding the most devastating aspects of Alzheimer's disease. Measures of central auditory processing such as gap detection have recently emerged as potential biomarkers in both human patients and the 5XFAD mouse model of Alzheimer's disease. Full validation of gap detection deficits as a biomarker will require detailed understanding of the underlying neuropathology, including which brain structures are involved and how the operation of neural circuits is affected. Here we show that 5XFAD mice exhibit gap detection deficits as early as 2 months of age, well before development of Alzheimer's disease-associated pathology. We then examined responses of neurons in the auditory cortex to gaps in white noise. Both gap responses and baseline firing rates were robustly and progressively degraded in 5XFAD mice compared to littermate controls. These impairments were first evident at 2-4 months of age in males, and 4-6 months in females. This demonstrates early-onset impairments to the central auditory system, which could be due to damage in the auditory cortex, upstream subcortical structures, or both.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Amanda J Stebritz
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA.
| |
Collapse
|
19
|
Li N, Li Y, Li LJ, Zhu K, Zheng Y, Wang XM. Glutamate receptor delocalization in postsynaptic membrane and reduced hippocampal synaptic plasticity in the early stage of Alzheimer's disease. Neural Regen Res 2019; 14:1037-1045. [PMID: 30762016 PMCID: PMC6404481 DOI: 10.4103/1673-5374.250625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic (5XFAD; Jackson Laboratory) mice and their littermates (wild-type, controls) were used in this study. Additional 6-week-old and 10-week-old 5XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For 10-week-old 5XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University, China on December 17, 2015 (approval No. AEEI-2015-182).
Collapse
Affiliation(s)
- Ning Li
- Department of Neurobiology, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Yang Li
- Department of Neurobiology, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Li-Juan Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Department of Physiology, Capital Medical University, Beijing, China
| | - Ke Zhu
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Department of Physiology, Capital Medical University, Beijing, China
| | - Yan Zheng
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Department of Physiology, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
20
|
Zhu L, Shu H, Liu D, Guo Q, Wang Z, Zhang Z. Apolipoprotein E ε4 Specifically Modulates the Hippocampus Functional Connectivity Network in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2018; 10:289. [PMID: 30319395 PMCID: PMC6170627 DOI: 10.3389/fnagi.2018.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of both apolipoprotein E (APOE) ε4 allele and amnestic mild cognitive impairment (aMCI) are considered to be risk factors for Alzheimer’s disease (AD). Numerous neuroimaging studies have suggested that the modulation of APOE ε4 affects intrinsic functional brain networks, both in healthy populations and in AD patients. However, it remains largely unclear whether and how ε4 allele modulates the brain’s functional network architecture in subjects with aMCI. Using resting-state functional magnetic resonance imaging (fMRI) and graph-theory approaches-functional connectivity strength (FCS), we investigate the topological organization of the whole-brain functional network in 28 aMCI ε4 carriers and 38 aMCI ε3ε3 carriers. In the present study, we first observe that ε4-related FCS increases in the right hippocampus/parahippocampal gyrus (HIP/PHG). Subsequent seed-based resting-state functional connectivity (RSFC) analysis revealed that, compared with the ε3ε3 carriers, the ε4 carriers had lower or higher RSFCs between the right HIP/PHG seed and the bilateral medial prefrontal cortex (MPFC) or the occipital cortex, respectively. Further correlation analyses have revealed that the FCS values in the right HIP/PHG and lower HIP/PHG-RSFCs with the bilateral MPFC were significantly correlated with the impairment of episodic memory and executive function in the aMCI ε4 carriers. Importantly, the logistic regression analysis showed that the HIP/PHG-RSFC with the bilateral MPFC predicted aMCI-conversion to AD. These findings suggest that the APOE ε4 allele may modulate the large-scale brain network in aMCI subjects, facilitating our understanding of how the entire assembly of the brain network reorganizes in response to APOE variants in aMCI. Further longitudinal studies need to be conducted, in order to examine whether these network measures could serve as primary predictors of conversion from aMCI ε4 carriers to AD.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|