1
|
Shi M, Li H, Chen T, Huang B, Li X, Dong X, Chi S, Yang Q, Liu H, Deng J, Tan B, Zhang S, Xie S. Effects of hydroxyproline supplementation in low fish meal diets on collagen synthesis, myofiber development and muscular texture of juvenile Pacific white shrimp ( Litopenaeus vannamei). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:428-437. [PMID: 38860024 PMCID: PMC11163151 DOI: 10.1016/j.aninu.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 06/12/2024]
Abstract
This experiment aimed to evaluate the impact of dietary hydroxyproline (Hyp) supplementation on the muscle quality of juvenile Pacific white shrimp (Litopenaeus vannamei) fed a low fishmeal diet. Six formulated diets included one high fishmeal (HF; 25% fishmeal content) and five low fishmeal diets (10% fishmeal content) with 0%, 0.2%, 0.4%, 0.6% and 0.8% Hyp (LF0, LF2, LF4, LF6 and LF8, respectively). Each diet was assigned to four replicates, and 40 shrimp (0.32 ± 0.00 g) per replicate were fed four times a day for 8 weeks. Dietary Hyp supplementation had little effects on growth performance, but increased the contents of Hyp, prolyl 4-hydroxylases (P4Hs), and collagen. The meat yield, springiness, hardness, chewiness, and cohesiveness of muscle were the highest in the LF4 group among the low fishmeal groups (P < 0.05). Cooking loss and freezing loss of muscle were the lowest in the LF4 group (P < 0.05). Dietary supplementation with 0.4% Hyp increased the myofiber density and decreased the myofiber diameter of muscle (P < 0.05). Supplementation of Hyp in the diet up-regulated the mRNA expression of smyhc5, smyhc15, col1a1, col1a2, igf-1f, tgf-β and tor and down-regulated the mRNA expression of smyhc 1, smyhc 2, smyhc 6a (P < 0.05). Supplementation of Hyp in the diet up-regulated the protein expression of P-4E-BP1, P-AKT, AKT and P-AKT/AKT (P < 0.05). These results suggested that the addition of 0.4% Hyp to low fishmeal diets improved the muscle quality of L. vannamei.
Collapse
Affiliation(s)
- Menglin Shi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoming Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tianyu Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bocheng Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
2
|
Wang H, Li B, Li A, An C, Liu S, Zhuang Z. Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex. Int J Mol Sci 2024; 25:6131. [PMID: 38892319 PMCID: PMC11172523 DOI: 10.3390/ijms25116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Busu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| |
Collapse
|
3
|
Li B, Wang H, Zeng X, Liu S, Zhuang Z. Mitochondrial Homeostasis Regulating Mitochondrial Number and Morphology Is a Distinguishing Feature of Skeletal Muscle Fiber Types in Marine Teleosts. Int J Mol Sci 2024; 25:1512. [PMID: 38338790 PMCID: PMC10855733 DOI: 10.3390/ijms25031512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.
Collapse
Affiliation(s)
- Busu Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Huan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| | - Xianghui Zeng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| | - Shufang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Zhimeng Zhuang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| |
Collapse
|
4
|
Li B, Wang H, Jiang C, Zeng X, Zhang T, Liu S, Zhuang Z. Tissue Distribution of mtDNA Copy Number And Expression Pattern of An mtDNA-Related Gene in Three Teleost Fish Species. Integr Org Biol 2023; 5:obad029. [PMID: 37705694 PMCID: PMC10495257 DOI: 10.1093/iob/obad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/05/2023] [Indexed: 09/15/2023] Open
Abstract
Teleosts are the most speciose vertebrates and have diverse swimming performance. Based on swimming duration and speed, teleosts are broadly divided into sustained, prolonged, and burst swimming fish. Teleosts with different swimming performance have different energy requirements. In addition, energy requirement also varies among different tissues. As mitochondrial DNA (mtDNA) copy number is correlated with ATP production, we speculated that mtDNA copy number varies among fish with different swimming performance, as well as among different tissues. In other species, mtDNA copy number is regulated by tfam (mitochondrial transcription factor A) through mtDNA compaction and mito-genome replication initiation. In order to clarify the tissue distribution of mtDNA copy number and expression pattern of tfam in teleosts with disparate swimming performance, we selected representative fish with sustained swimming (Pseudocaranx dentex), prolonged swimming (Takifugu rubripes), and burst swimming (Paralichthys olivaceus). We measured mtDNA copy number and tfam gene expression in 10 tissues of these three fish. The results showed the mtDNA content pattern of various tissues was broadly consistent among three fish, and high-energy demanding tissues contain higher mtDNA copy number. Slow-twitch muscles with higher oxidative metabolism possess a greater content of mtDNA than fast-twitch muscles. In addition, relatively higher mtDNA content in fast-twitch muscle of P. olivaceus compared to the other two fish could be an adaptation to their frequent burst swimming demands. And the higher mtDNA copy number in heart of P. dentex could meet their oxygen transport demands of long-distance swimming. However, tfam expression was not significantly correlated with mtDNA copy number in these teleosts, suggesting tfam may be not the only factor regulating mtDNA content among various tissues. This study can lay a foundation for studying the role of mtDNA in the adaptive evolution of various swimming ability in teleost fish.
Collapse
Affiliation(s)
- B Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Marine Life research center, Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - H Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - C Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - X Zeng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - T Zhang
- Dalian Tianzheng Industry Co., Ltd., Dalian, Liaoning, China
| | - S Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Marine Life research center, Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - Z Zhuang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| |
Collapse
|
5
|
Li M, Wen H, Huang F, Wu M, Yu L, Jiang M, Lu X, Tian J. Role of arginine supplementation on muscular metabolism and flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Front Nutr 2022; 9:980188. [PMID: 36118779 PMCID: PMC9473507 DOI: 10.3389/fnut.2022.980188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 01/20/2023] Open
Abstract
It is no doubt that the improvement of flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater contributes to its development potential in aquaculture. In this study, we aimed to explore the effect of arginine supplementation on the flesh quality of L. vannamei reared in freshwater and its mechanism. L. vannamei were randomly fed with three diets for 56 days, of which arginine level was 10.15 g kg–1 (arginine-deficient diet), 21.82 g kg–1 (arginine-optimal diet), and 32.46 g kg–1 (arginine-excessive diet), respectively. Each diet was randomly assigned to triplicate tanks, and each tank was stocked with 35 shrimps (initial weight: 1.70 ± 0.02 g). Results showed the arginine-optimal diet increased the weight gain, flesh percentage, crude protein and flavor amino acid contents in muscle, and improved the flesh hardness by conversing fast myofibers to slow myofibers, increasing myofiber density and myofibrillar length, and promoting ornithine and collagen synthesis. The arginine-optimal diet influenced the purine metabolic pathway by reducing hypoxanthine, xanthine, and inosine contents. Ornithine, citrulline, and glutamate were identified as the key metabolites affecting flesh quality traits after arginine treatments. Only increasing the levels of dietary arginine did not result in an increase in endogenous creatine synthesis in muscle and hepatopancreas. Overall, the arginine-optimal diet improved the flesh quality traits of L. vannamei reared in freshwater due to the enhanced muscular hardness, protein deposition, and flavor, which may be contributing to the transformation of muscle fiber type and increase in protein synthesis by the metabolites of arginine (ornithine, citrulline, and glutamate).
Collapse
Affiliation(s)
- Meifeng Li
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Feng Huang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Meili Wu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Juan Tian,
| |
Collapse
|
6
|
Genome-wide DNA methylation profiles provide insight into epigenetic regulation of red and white muscle development in Chinese perch Siniperca chuatsi. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110647. [PMID: 34271193 DOI: 10.1016/j.cbpb.2021.110647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Fish skeletal muscles are composed of spatially well-separated fiber types, namely, red and white muscles with different physiological functions and metabolism. To compare the DNA methylation profiles of the two types of muscle tissues and identify potential candidate genes for the muscle growth and development under epigenetic regulation, genome-wide DNA methylation of the red and white muscle in Chinese perch Siniperca chuatsi were comparatively analyzed using bisulfate sequencing methods. An average of 0.9 billion 150-bp paired-end reads were obtained, of which 86% were uniquely mapped to the genome. Methylation mostly occurred at CG sites at a ratio of 94.43% in the red muscle and 93.16% in the white muscle. The mean methylation levels at C-sites were 5.95% in red muscle and 5.83% in white muscle, whereas the mean methylation levels of CG, CHG, and CHH were 73.23%, 0.62%, and 0.67% in red muscle, and 71.01%, 0.62%, and 0.67% in white muscle, respectively. A total of 4192 differentially methylated genes (DMGs) were identified significantly enriched in cell signaling pathways related to skeletal muscle differentiation and growth. Various muscle-related genes, including myosin gene isoforms and regulatory factors, are differentially methylated in the promoter region between the red and white muscles. Further analysis of the transcriptional expression of these genes showed that the muscle regulatory factors (myf5, myog, pax3, pax7, and twitst2) and myosin genes (myh10, myh16, myo18a, myo7a, myo9a, and myl3) were differentially expressed between the two kinds of muscles, consistent with the DNA methylation analysis results. ELISA assays confirmed that the level of 5mC in red muscle was significantly higher than in white muscle (P < 0.05). The RT-qPCR assays revealed that the expression levels of the three DNA methylation transferase (dnmt) subtypes, dnmt1, dnmt3ab, and dnmt3bb1, were significantly higher in red muscle than in white muscle. The higher DNA methylation levels in the red muscle may result from higher DNA methylation transferase expression in the red muscles. Thus, this study might provide a theoretical foundation to better understand epigenetic regulation in the growth and development of red and white muscles in animals, at least in Chinese perch fish.
Collapse
|
7
|
Wang B, Chan YL, Li G, Ho KF, Anwer AG, Smith BJ, Guo H, Jalaludin B, Herbert C, Thomas PS, Liao J, Chapman DG, Foster PS, Saad S, Chen H, Oliver BG. Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. Antioxidants (Basel) 2021; 10:antiox10071029. [PMID: 34202305 PMCID: PMC8300816 DOI: 10.3390/antiox10071029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, PM was removed when mating started to model mothers moving to cleaner areas during pregnancy to protect their unborn child (Pre-exposure). Lung pathology was characterised in both dams and offspring. A subcohort of female offspring was also exposed to ovalbumin to model allergic airways disease. PM2.5 and Pre-exposure dams exhibited airways hyper-responsiveness (AHR) with mucus hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitochondrial dysfunction in the lungs. Female offspring from PM2.5 and Pre-exposure dams displayed AHR with increased lung inflammation and mitochondrial ROS production, while males only displayed increased lung inflammation. After the ovalbumin challenge, AHR was increased in female offspring from PM2.5 dams compared with those from control dams. Using an in vitro model, the mitochondria-targeted antioxidant MitoQ reversed mitochondrial dysfunction by PM stimulation, suggesting that the lung pathology in offspring is driven by dysfunctional mitochondria. In conclusion, chronic exposure to low doses of PM2.5 exerted transgenerational impairment on lung health.
Collapse
Affiliation(s)
- Baoming Wang
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Yik-Lung Chan
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Gerard Li
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China;
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Engineering, Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Bradford J. Smith
- Department of Bioengineering, Department of Paediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Boulder, CO 80309, USA;
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China;
| | - Bin Jalaludin
- Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Air Pollution, Energy and Health Research (CAR), Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Cristan Herbert
- Department of Pathology, Faculty of Medicine, School of Medical Sciences, Prince of Wales’ Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.); (P.S.T.)
| | - Paul S. Thomas
- Department of Pathology, Faculty of Medicine, School of Medical Sciences, Prince of Wales’ Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.); (P.S.T.)
| | - Jiayan Liao
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - David G. Chapman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Paul S. Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Sonia Saad
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, Sydney, NSW 2064, Australia;
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
- Correspondence:
| |
Collapse
|
8
|
Huang HM, Wu PH, Chou PC, Hsiao WT, Wang HT, Chiang HP, Lee CM, Wang SH, Hsiao YC. Enhancement of T2* Weighted MRI Imaging Sensitivity of U87MG Glioblastoma Cells Using γ-Ray Irradiated Low Molecular Weight Hyaluronic Acid-Conjugated Iron Nanoparticles. Int J Nanomedicine 2021; 16:3789-3802. [PMID: 34103915 PMCID: PMC8179824 DOI: 10.2147/ijn.s307648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (Fe3O4) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection. METHODS LMWHA and Fe3O4 NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs. RESULTS Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells. DISCUSSION Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.
Collapse
Affiliation(s)
- Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ping-Han Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Po-Chien Chou
- School of Organic and Polymeric, National Taipei University of Technology, Taipei, Taiwan
| | - Wen-Tien Hsiao
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Pei Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Lee
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Identification of mRNA Degradome Variation Dependent on Divergent Muscle Mass in Different Pig Breeds. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The search is still on for the molecular processes associated with the development and metabolism of skeletal muscles. Selection conducted in farm animals is focused on high muscle mass because it delivers higher economic profit. The present study aimed to shed light on mRNA degradome signals that could be characteristic for molecular processes associated with an abundance of muscle mass and to identify miRNA regulatory networks controlling these processes in pigs applying next-generation-sequencing (NGS). In the study, over 10,000 degraded transcripts were identified per sample, with the highest abundance for genes encoding mitochondrial proteins (COXs, NDs, CYTB, ATP6 and ATP8). Moreover, only 26% of the miRNA targets were found within this degraded transcript pool, which suggested for miRNAs other molecular mechanism at different level of gene expression than mRNA degradation. On the other hand, a small share of the identified degraded transcripts associated with miRNA regulation suggests a different mechanism of mRNA degradation for identified degraded transcropts. Subsequently, most of the miRNA gene degraded targets, such as ENO3, CKM, CRYAB and ADAM19 encode proteins involved in the muscle mass control. The present study showed an interesting dependence between miRNAs and their targets. Nevertheless, the complete view of the miRNA regulatory network could be a subject of further advanced research, which would employ a miRNA transfection procedure in skeletal muscle cell cultures.
Collapse
|
10
|
Wang HT, Chou PC, Wu PH, Lee CM, Fan KH, Chang WJ, Lee SY, Huang HM. Physical and Biological Evaluation of Low-Molecular-Weight Hyaluronic Acid/Fe 3O 4 Nanoparticle for Targeting MCF7 Breast Cancer Cells. Polymers (Basel) 2020; 12:polym12051094. [PMID: 32403369 PMCID: PMC7285014 DOI: 10.3390/polym12051094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Low-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-Fe3O4 NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out. In addition, the cell targeting ability and characteristics of the LMWHA-Fe3O4 NPs for MCF7 breast cancer cells were analyzed using the thiocyanate method and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The experimental results showed that the LMWHA-Fe3O4 NPs were not only easily injectable due to their low viscosity, but also exhibited a significant superparamagnetic property. Furthermore, the in vitro assay results showed that the NPs had negligible cytotoxicity and exhibited a good cancer cell targeting ability. Overall, the results therefore suggest that the LMWHA-Fe3O4 NPs have considerable potential as an injectable agent for enhanced magnetic resonance imaging (MRI) and/or hyperthermia treatment in breast cancer therapy.
Collapse
Affiliation(s)
- Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan; (H.-T.W.); (P.-C.C.)
| | - Po-Chien Chou
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan; (H.-T.W.); (P.-C.C.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
| | - Ping-Han Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Ming Lee
- Core Facility Center, Office of Research and Development, Taipei Medical Universitry, Taipei 11031, Taiwan;
| | - Kang-Hsin Fan
- Dental Department, En Chu Kong Hospital, New Taipei City 23742, Taiwan;
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-291-937-9783
| |
Collapse
|