1
|
Flierl F, Spies BC, Rothlauf S, Vach K, Kohal RJ, Lüchtenborg J. Effects of monomer contamination during post-rinsing in vat photopolymerization on dimensional stability. Sci Rep 2025; 15:10139. [PMID: 40128574 PMCID: PMC11933701 DOI: 10.1038/s41598-025-94404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
Accuracy is an important parameter of additively manufactured objects. The influence of post-processing on the objects, in particular the effects of monomer contamination in isopropanol used during the post-rinsing of parts produced by vat photopolymerisation, is therefore important. Forty test specimens were fabricated from standard dental resin and divided into four groups, each rinsed with isopropanol containing 0 wt%, 10 wt%, 20 wt% or 30 wt% resin contamination. Optical scans of the specimens were compared with the original design to assess dimensional deviations. The results showed no significant deviations at contamination levels up to 10 wt%. At 20 wt%, deviations were observed in small structures and inclined planes, while 30 wt% contamination resulted in significant deviations in all areas. Rinsing with 99.9% isopropanol consistently produced the highest accuracy. Resin build-up below 10 wt% did not affect dimensional stability, suggesting that isopropanol replacement is unnecessary at this level. However, a contamination level of 20 wt% can lead to deviations under certain conditions, and a contamination level of 30 wt% consistently affects accuracy. These findings highlight the importance of monitoring contamination levels to maintain the integrity of vat photopolymerisation workflows and suggest that isopropanol should be replaced at contamination levels approaching 30 wt%.
Collapse
Affiliation(s)
- Florian Flierl
- Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Benedikt C Spies
- Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Severin Rothlauf
- Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Stefan-Meier Str. 26, 79104, Freiburg, Germany
| | - Ralf J Kohal
- Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jörg Lüchtenborg
- Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Caronna F, Limem S, Do LDK, Ronan W, Dolan EB. In vitroevaluation of bioabsorbable poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB) warp-knitted spacer fabric scaffolds for osteogenic differentiation. Biomed Mater 2025; 20:025011. [PMID: 39787697 DOI: 10.1088/1748-605x/ada85d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre-based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were culturedin vitroon two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties. Scaffold structure and yarn properties were characterized after manufacturing. Cells were seeded on the two scaffolds and treated with osteogenic media for up to 35 days. Both scaffolds supported similar cell growth patterns, featuring a higher cell density on multifilament yarns, which could be beneficial to drive cell proliferation or related phenomena in localized area of the construct. The increase in alkaline phosphatase activity and the calcium deposition observed on some PLA and P4HB scaffolds after 28 and 35 days of culture, confirm their potential to support MC3T3-E1 cells differentiation, however inconsistent mineralization was observed on the scaffolds. Due to their structural and morphological features, ability to support cell attachment and growth, and their limited osteogenic potential, these PLA and P4HB bioabsorbable textile scaffolds are recommended for further investigation for bone tissue engineering applications.
Collapse
Affiliation(s)
- Flavia Caronna
- Biomechanics Research Centre (BMEC), School of Engineering, University of Galway, Galway, Ireland
| | - Skander Limem
- Tepha Medical Inc. (part of Becton & Dickinson), Lexington, MA, United States of America
| | | | - William Ronan
- Biomechanics Research Centre (BMEC), School of Engineering, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomechanics Research Centre (BMEC), School of Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Improved Bone Regeneration Using Biodegradable Polybutylene Succinate Artificial Scaffold in a Rabbit Model. J Funct Biomater 2022; 14:jfb14010022. [PMID: 36662069 PMCID: PMC9865108 DOI: 10.3390/jfb14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
The treatment of extensive bone loss represents a great challenge for orthopaedic and reconstructive surgery. Most of the time, those treatments consist of multiple-stage surgeries over a prolonged period, pose significant infectious risks and carry the possibility of rejection. In this study, we investigated if the use of a polybutylene succinate (PBS) micro-fibrillar scaffold may improve bone regeneration in these procedures. In an in vivo rabbit model, the healing of two calvarial bone defects was studied. One defect was left to heal spontaneously while the other was treated with a PBS scaffold. Computed tomography (CT) scans, histological and immunohistochemical analyses were performed at 4, 12 and 24 weeks. CT examination showed a significantly larger area of mineralised tissue in the treated defect. Histological examination confirmed a greater presence of active osteoblasts and mineralised tissue in the scaffold-treated defect, with no evidence of inflammatory infiltrates around it. Immunohistochemical analysis was positive for CD56 at the transition point between healthy bone and the fracture zone. This study demonstrates that the use of a PBS microfibrillar scaffold in critical bone defects on a rabbit model is a potentially effective technique to improve bone regeneration.
Collapse
|
4
|
Construction and evaluation of co-electrospun poly (butylene succinate)/gelatin materials as potential vascular grafts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Synthesis of Hydrophilic Poly(butylene succinate-butylene dilinoleate) (PBS-DLS) Copolymers Containing Poly(Ethylene Glycol) (PEG) of Variable Molecular Weights. Polymers (Basel) 2021; 13:polym13183177. [PMID: 34578078 PMCID: PMC8468582 DOI: 10.3390/polym13183177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Polymeric materials have numerous applications from the industrial to medical fields because of their vast controllable properties. In this study, we aimed to synthesize series of poly(butylene succinate-dilinoleic succinate-ethylene glycol succinate) (PBS-DLS-PEG) copolymers, by two-step polycondensation using a heterogeneous catalyst and a two-step process. PEG of different molecular weights, namely, 1000 g/mol and 6000 g/mol, was used in order to study its effect on the surface and thermal properties. The amount of the PBS hard segment in all copolymers was fixed at 70 wt%, while different ratios between the soft segments (DLS and PEG) were applied. The chemical structure of PBS-DLS-PEG was evaluated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Gel permeation chromatography was used to determine the molecular weight and dispersity index. The results of structural analysis indicate the incorporation of PEG in the macrochain. The physical and thermal properties of the newly synthesized copolymers were also evaluated using water contact angle measurements, differential scanning calorimetry and dynamic thermomechanical analysis. It was found that increasing the amount of PEG of a higher molecular weight increased the surface wettability of the new materials while maintaining their thermal properties. Importantly, the two-step melt polycondensation allowed a direct fabrication of a polymeric filament with a well-controlled diameter directly from the reactor. The obtained results clearly show that the use of two-step polycondensation in the melt allows obtaining novel PBS-DLS-PEG copolymers and creates new opportunities for the controlled processing of these hydrophilic and thermally stable copolymers for 3D printing technology, which is increasingly used in medical techniques.
Collapse
|
6
|
Fouzi M, Thimma M, BinSabt M, Husain AA, Aouabdi S. Stem cell growth and proliferation on RGD bio-conjugated cotton fibers. Biomed Mater Eng 2021; 32:39-52. [PMID: 33164919 DOI: 10.3233/bme-201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Merging stem cells with biomimetic materials represent an attractive approach to tissue engineering. The development of an alternative scaffold with the ability to mimic the extracellular matrix, and the 3D gradient preventing any alteration in cell metabolism or in their gene expression patterns, would have many medical applications. OBJECTIVE In this study, we introduced the use of RGD (Arg-Gly-Asp) bio-conjugated cotton to promote the growth and proliferation of mesenchymal stem cells (MSCs). METHODS We measured the expression of stem cell markers and adhesion markers with Q-PCR and analyzed the transcriptomic. The results obtained showed that the MSCs, when cultured with bio-conjugated cotton fibers, form aggregates around the fibers while proliferating. The seeded MSCs with cotton fibers proliferated in a similar fashion to the cells seeded on the monolayer (population doubling level 1.88 and 2.19 respectively). RESULTS The whole genome sequencing of cells adhering to these cotton fibers and cells adhering to the cell culture dish showed differently expressed genes and pathways in both populations. However, the expression of the stem cell markers (Oct4, cKit, CD105) and cell adhesion markers (CD29, HSPG2 and CD138), when examined with quantitative RT-PCR, was maintained in both cell populations. CONCLUSION These results clearly show the ability of the cotton fibers to promote MSCs growth and proliferation in a 3D structure mimicking the in vivo environment without losing their stem cell phenotype.
Collapse
Affiliation(s)
| | - Manjula Thimma
- Environmental Epigenetics Lab, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | | | - Ali A Husain
- Department of Chemistry, Kuwait University, Kuwait
| | - Sihem Aouabdi
- King Saud Bin Abdualziz Univeristy, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Gkountela C, Rigopoulou M, Barampouti EM, Vouyiouka S. Enzymatic prepolymerization combined with bulk post-polymerization towards the production of bio-based polyesters: The case of poly(butylene succinate). Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Conrad B, Hayashi C, Yang F. Gelatin-Based Microribbon Hydrogels Guided Mesenchymal Stem Cells to Undergo Endochondral Ossification In Vivo with Bone-Mimicking Mechanical Strength. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00138-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Porous polybutylene succinate films enabling adhesion of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
12
|
Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1772-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Oliva J, Florentino A, Bardag-Gorce F, Niihara Y. Engineering, differentiation and harvesting of human adipose-derived stem cell multilayer cell sheets. Regen Med 2019; 14:151-163. [PMID: 30829557 DOI: 10.2217/rme-2018-0053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The study goals were to engineer and harvest scaffold-free undifferentiated/differentiated multilayer human adipose-derived stem cell (hADSC) cell sheets, in absence of treatment. Materials & methods: The hADSC are seeded in 35 mm culture dishes. At confluence or when multilayer cell sheets are formed, hADSC are treated with predefined differentiation culture media (adipocyte, chondrocyte and osteoblast). Results: Undifferentiated hADSC and differentiated adipocyte, osteoblast and chondrocyte hADSC multilayer cell sheets (hADSCmCS) have been harvested. Hematoxylin & eosin showed the formation of multilayer cell sheets. Undifferentiated hADSC multilayer cell sheets preserve their stem cell markers. Differentiated adipocyte, osteoblast and chondrocyte hADSCmCS expressed specific markers. Conclusion: This simple protocol opens possibilities to engineer scaffold-free hADSCm cell sheet to transplant them on damaged organs.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.,Emmaus Life Sciences, Inc., 21250 Hawthorne Blvd., Suite 800, Torrance, CA 90503, USA
| | - Arjie Florentino
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Fawzia Bardag-Gorce
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Yutaka Niihara
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.,Emmaus Life Sciences, Inc., 21250 Hawthorne Blvd., Suite 800, Torrance, CA 90503, USA
| |
Collapse
|