1
|
Zhuang X, Sun Z, Du H, Zhou T, Zou J, Fu W. Metformin inhibits high glucose-induced apoptosis of renal podocyte through regulating miR-34a/SIRT1 axis. Immun Inflamm Dis 2024; 12:e1053. [PMID: 38270305 PMCID: PMC10797654 DOI: 10.1002/iid3.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Previous studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear. METHOD We aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM). RESULTS Microarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3'-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1. CONCLUSION This study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN.
Collapse
Affiliation(s)
- Xudong Zhuang
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Zhuye Sun
- Department of PharmacyRizhao Hospital of Traditional Chinese MedicineRizhaoShandongChina
| | - Huasheng Du
- Department of NephrologyQingdao Municipal HospitalQingdaoShandongChina
| | - Tianhui Zhou
- Beijing University of Chinese MedicineBeijingChina
| | - Jing Zou
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Wei Fu
- Department of Drug DispensingZibo Central HospitalZiboShandongChina
| |
Collapse
|
2
|
Yan S, Dong W, Li Z, Wei J, Han T, Wang J, Lin F. Metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway in osteoarthritis. J Orthop Surg Res 2023; 18:198. [PMID: 36915137 PMCID: PMC10012483 DOI: 10.1186/s13018-023-03571-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative disease in joints among elderly patients. Senescence is deeply involved in the pathogenesis of osteoarthritis. Metformin is widely used as the first-line drug for Type 2 diabetes mellitus (T2DM), and has great potential for the treatment of other aging-related disorders, including OA. However, the role of metformin in OA is not fully elucidated. Therefore, our aim here was to investigate the effects of metformin on human chondrocytes. METHODS After metformin treatment, expression level of microRNA-34a and SIRT1 in chondrocyte were detected with quantitative real-time PCR and immunofluorescence staining. Then, microRNA-34a mimic and small interfering RNA (siRNA) against SIRT1 (siRNA-SIRT1) were transfected into chondrocyte. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to assess chondrocyte senescence. Chondrocyte viability was illustrated with MTT and colony formation assays. Western blot was conducted to detect the expression of P16, IL-6, matrix metalloproteinase-13 (MMP-13), Collagen type II (COL2A1) and Aggrecan (ACAN). RESULTS We found that metformin treatment (1 mM) inhibited microRNA-34a while promoted SIRT1 expression in OA chondrocytes. Both miR-34a mimics and siRNA against SIRT1 inhibited SIRT1 expression in chondrocytes. SA-β-gal staining assay confirmed that metformin reduced SA-β-gal-positive rate of chondrocytes, while transfection with miR-34a mimics or siRNA-SIRT1 reversed it. MTT assay and colony formation assay showed that metformin accelerated chondrocyte proliferation, while miR-34a mimics or siRNA-SIRT1 weakened this effect. Furthermore, results from western blot demonstrated that metformin suppressed expression of senescence-associated protein P16, proinflammatory cytokine IL-6 and catabolic gene MMP-13 while elevated expression of anabolic proteins such as Collagen type II and Aggrecan, which could be attenuated by transfection with miR-34a mimics. CONCLUSION Overall, our data suggest that metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway, indicating it could be a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Shiju Yan
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Wenjing Dong
- Department of Gerontology, Hainan Hospital of Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Zhirui Li
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Junqiang Wei
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Tao Han
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Junliang Wang
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Feng Lin
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China.
| |
Collapse
|
3
|
The Effect of Allograft Inflammatory Factor-1 on Inflammation, Oxidative Stress, and Autophagy via miR-34a/ATG4B Pathway in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1668000. [PMID: 36345369 PMCID: PMC9637042 DOI: 10.1155/2022/1668000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Increasing evidence suggests that disorders of inflammation, oxidative stress, and autophagy contribute to the pathogenesis of diabetic kidney disease (DKD). This study attempted to clarify the effect of allograft inflammatory factor-1 (AIF-1), miR-34a, and ATG4B on inflammation, oxidative stress, and autophagy in DKD both in vitro and in vivo experiments. In vivo, it was found that the levels of AIF-1, miR-34a, oxidative stress, and inflammatory factors were significantly increased in blood and urine samples of DKD patients and mouse models and correlated with the level of urinary protein. In vitro, it was also found that the expressions of AIF-1, miR-34a, ROS, and inflammatory factors were increased, while ATG4B and other autophagy related proteins were decreased in human renal glomerular endothelial cells (HRGECs) cultured with high concentration glucose medium (30 mmol/L). When AIF-1 gene was overexpressed, the levels of miR-34a, ROS, and inflammatory factors were significantly upregulated, and autophagy-related proteins such as ATG4B were downregulated, while downregulation of AIF-1 gene had the opposite effect. In addition, miR-34a inhibited the expression of ATG4B and autophagy-related proteins and increased the levels of ROS and inflammation. Furthermore, the result of luciferase reporter assay suggested that ATG4B was the target gene of miR-34a. When ATG4B gene was overexpressed, the level of autophagy was upregulated, and inflammatory factors were downregulated. Conversely, when ATG4B gene was inhibited, the level of autophagy was downregulated, and inflammatory factors were upregulated. Then, autophagy inducers inhibited the levels of inflammation and ROS, whereas autophagy inhibitors had the opposite function in HRGECs induced by glucose (30 mmol/L). In conclusion, the above data suggested that AIF-1 regulated the levels of inflammation, oxidative stress, and autophagy in HRGECs via miR-34a/ATG4B pathway to contribute to the pathogenesis of diabetic kidney disease.
Collapse
|
4
|
Xiao S, Yang Y, Liu YT, Zhu J. Liraglutide Regulates the Kidney and Liver in Diabetic Nephropathy Rats through the miR-34a/SIRT1 Pathway. J Diabetes Res 2021; 2021:8873956. [PMID: 33880382 PMCID: PMC8046563 DOI: 10.1155/2021/8873956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To explore the regulatory effects of liraglutide on the kidney and liver through the miR-34a/SIRT1 pathway with related factors in diabetic nephropathy (DN) rats. METHODS DN rats were randomly divided into two groups (n = 10) and were injected with liraglutide or normal saline twice a day. The 24-hour urine microalbumin content and biochemical index levels were measured. qRT-PCR was performed to detect the expression of miR-34a in the kidney and liver tissues. The levels of SIRT1, HIF-1a, Egr-1, and TGF-β1 in kidney and liver tissues were determined using qRT-PCR, western blot, and immunohistochemistry. Electron microscopy and HE staining were used to observe the ultrastructure and pathological changes. RESULTS Liraglutide treatment in DN rats decreased blood glucose, 24-hour urine microalbumin, TC, TG, LDL-C, UA, Cr, UREA, ALT, and AST levels and increased the level of HDL-C (P < 0.05). Compared with the control group, the miR-34a levels were significantly decreased in kidney and liver tissues followed by liraglutide treatment (P < 0.05). The levels of SIRT1 in the liraglutide group are significantly higher than those in the control group with the kidney and liver tissues (P < 0.05). Conversely, the contents of HIF-1a, Egr-1, and TGF-β1 were significantly lower in the liraglutide group than in the control group (P < 0.05). Electron microscopy showed that the kidney of the liraglutide-treated group exhibited minor broadening of the mesangial areas, fewer deposits, and a well-organized foot process. HE staining revealed that the kidney of the liraglutide-treated rats had a more regular morphology of the glomerulus and Bowman sac cavity and lighter tubular edema. Additionally, the liraglutide-treated DN rats had a clear hepatic structure, a lower degree of steatosis, and mild inflammatory cell infiltration. CONCLUSION Liraglutide, through its effect on the miR-34a/SIRT1 pathway, may have a protective role in the kidney and liver of DN rats.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Endocrinology, People's Hospital of Shenzhen Baoan District, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ye Yang
- Department of No. 1 Cadres, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue-Tong Liu
- Department of Ultrasonic ECG, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Zhu
- Department of Endocrinology, People's Hospital of Shenzhen Baoan District, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Song A, Zhang C, Meng X. Mechanism and application of metformin in kidney diseases: An update. Biomed Pharmacother 2021; 138:111454. [PMID: 33714781 DOI: 10.1016/j.biopha.2021.111454] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes mellitus (T2DM), acting via indirect activation of 5' Adenosine monophosphate-activated Protein Kinase (AMPK). Beyond the anti-diabetic effect, accumulative pieces of evidence have revealed that metformin also everts a beneficial effect in diverse kidney diseases. In various acute kidney diseases (AKI) animal models, metformin protects renal tubular cells from inflammation, apoptosis, reactive oxygen stress (ROS), endoplasmic reticulum (ER) stress, epithelial-mesenchymal transition (EMT) via AMPK activation. In diabetic kidney disease (DKD), metformin also alleviates podocyte loss, mesangial cells apoptosis, and tubular cells senescence through AMPK-mediated signaling pathways. Besides, metformin inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluids secretion and the mammalian target of rapamycin (mTOR)-involved cyst formation negatively regulated by AMPK in autosomal dominant polycystic kidney disease (APDKD). Furthermore, metformin also contributes to the alleviation of urolithiasis and renal cell carcinoma (RCC). As the common pathway for chronic kidney disease (CKD) progressing towards end-stage renal disease (ESRD), renal fibrosis is ameliorated by metformin, to a great extent dependent on AMPK activation. However, clinical data are not always consistent with preclinical data, some clinical investigations showed the unmeaningful even detrimental effect of metformin on T2DM patients with kidney diseases. Most importantly, metformin-associated lactic acidosis (MALA) is a vital issue restricting the application of metformin. Thus, we conclude the application of metformin in kidney diseases and uncover the underlying molecular mechanisms in this review.
Collapse
Affiliation(s)
- Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
7
|
Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem Cells Int 2021; 2021:6616240. [PMID: 33505470 PMCID: PMC7806386 DOI: 10.1155/2021/6616240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are ideal seed cells for the regeneration of dental tissues. However, DPSC senescence restricts its clinical applications. Metformin (Met), a common prescription drug for type 2 diabetes, is thought to influence the aging process. This study is aimed at determining the effects of metformin on DPSC senescence. Young and aging DPSCs were isolated from freshly extracted human teeth. Flow cytometry confirmed that DPSCs expressed characteristic surface antigen markers of mesenchymal stem cells (MSCs). Cell Counting Kit-8 (CCK-8) assay showed that a concentration of 100 μM metformin produced the highest increase in the proliferation of DPSCs. Metformin inhibited senescence in DPSCs as evidenced by senescence-associated β-galactosidase (SA-β-gal) staining and the expression levels of senescence-associated proteins. Additionally, metformin significantly suppressed microRNA-34a-3p (miR-34a-3p) expression, elevated calcium-binding protein 39 (CAB39) expression, and activated the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Dual-luciferase reporter assay confirmed that CAB39 is a direct target for miR-34a-3p. Furthermore, transfection of miR-34a-3p mimics promoted the senescence of DPSCs, while metformin treatment or Lenti-CAB39 transfection inhibited cellular senescence. In conclusion, these results indicated that metformin could alleviate the senescence of DPSCs by downregulating miR-34a-3p and upregulating CAB39 through the AMPK/mTOR signaling pathway. This study elucidates on the inhibitory effect of metformin on DPSC senescence and its potential as a therapeutic target for senescence treatment.
Collapse
|
8
|
Pan Q, Lu X, Zhao C, Liao S, Chen X, Guo F, Yang C, Liu HF. Metformin: the updated protective property in kidney disease. Aging (Albany NY) 2020; 12:8742-8759. [PMID: 32364526 PMCID: PMC7244070 DOI: 10.18632/aging.103095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management in patients with renal insufficiency and broadening the scope of research on the renal protective effects of metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection and its potential in the treatment of various kidney diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
9
|
Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infect Immun 2019; 88:IAI.00678-19. [PMID: 31611276 PMCID: PMC6921661 DOI: 10.1128/iai.00678-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of nosocomial infections. The molecular mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Early growth response 1 (Egr-1) is a zinc-finger transcription factor that controls inflammatory responses. Here, we characterized the role of Egr-1 in host defense against P. aeruginosa infection in a mouse model of acute bacterial pneumonia. Egr-1 expression was rapidly and transiently induced in response to P. aeruginosa infection. Egr-1-deficient mice displayed decreased mortality, reduced levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-1β [IL-1β], IL-6, IL-12, and IL-17), and enhanced bacterial clearance from the lung. Egr-1 deficiency caused diminished NF-κB activation in P. aeruginosa-infected macrophages independently of IκBα phosphorylation. A physical interaction between Egr-1 and NF-κB p65 was found in P. aeruginosa-infected macrophages, suggesting that Egr-1 could be required for assembly of heterodimeric transcription factors that direct synthesis of inflammatory mediators. Interestingly, Egr-1 deficiency had no impact on neutrophil recruitment in vivo due to its differential effects on chemokine production, which included diminished accumulation of KC (CXCL1), MIP2 (CXCL2), and IP-10 (CXCL10) and increased accumulation of LIX (CXCL5). Importantly, Egr-1-deficient macrophages and neutrophils displayed significant increases in nitric oxide production and bacterial killing ability that correlated with enhanced bacterial clearance in Egr-1-deficient mice. Together, these findings suggest that Egr-1 plays a detrimental role in host defense against P. aeruginosa acute lung infection by promoting systemic inflammation and negatively regulating the nitric oxide production that normally assists with bacterial clearance.
Collapse
|
10
|
Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2019; 20:ijms20143393. [PMID: 31295940 PMCID: PMC6678414 DOI: 10.3390/ijms20143393] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage renal disease (ESRD) and is therefore a major burden on the healthcare system. Patients with DKD are highly susceptible to developing cardiovascular disease, which contributes to increased morbidity and mortality rates. While progress has been made to inhibit the acceleration of DKD, current standards of care reduce but do not eliminate the risk of DKD. There is growing appreciation for the role of inflammation in modulating the process of DKD. The focus of this review is on providing an overview of the current status of knowledge regarding the pathologic roles of inflammation in the development of DKD. Finally, we summarize recent therapeutic advances to prevent DKD, with a focus on the anti-inflammatory effects of newly developed agents.
Collapse
|
11
|
Xu J, Chen Y, Xing Y, Ye S. Metformin inhibits high glucose-induced mesangial cell proliferation, inflammation and ECM expression through the SIRT1-FOXO1-autophagy axis. Clin Exp Pharmacol Physiol 2019; 46:813-820. [PMID: 31267567 DOI: 10.1111/1440-1681.13120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the role of metformin in high glucose-induced mesangial cell proliferation, inflammation and extracellular matrix (ECM) accumulation and to elucidate the underlying mechanism of metformin function. An MTT assay was used to examine rat mesangial cell (RMC) proliferation. The levels of TNF-α, IL-6 and TGF-β in RMCs were determined by ELISA. The protein expression of fibronectin, collagen IV and autophagy-related proteins (Beclin-1, LC3-I and LC3-II) in RMCs was detected using western blot. Fluorescence microscopy analysis was carried out to evaluate RMC autophagy. Our results showed that high glucose-induced RMC proliferation, inflammation and ECM expression, but these effects were markedly reduced by metformin. We confirmed that metformin suppressed high glucose-induced RMC proliferation, inflammation and ECM expression via induction of autophagy. Mechanistic investigation demonstrated an axis of SIRT1-FOXO1 in RMC autophagy. Our data indicated that metformin inhibits high glucose-induced mesangial cell proliferation, inflammation and ECM expression through a SIRT1-FOXO1-autophagy axis.
Collapse
Affiliation(s)
- Jiang Xu
- School of Medicine, Shandong University, Jinan, China.,Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Schulten HJ, Bakhashab S. Meta-Analysis of Microarray Expression Studies on Metformin in Cancer Cell Lines. Int J Mol Sci 2019; 20:3173. [PMID: 31261735 PMCID: PMC6650866 DOI: 10.3390/ijms20133173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified eight eligible submissions, representing five different studies, that employed various conditions including different cell lines, MTF concentrations, treatment durations, and cellular components. A compilation of the data sets of 13 different conditions contained 443 repeatedly up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1), and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most significantly (p-value < 0.05, Fisher's exact test) overrepresented protein class was entitled, nucleic acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism, cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised genes that were at least under one condition up- and in at least another condition down-regulated. Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript 1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and biofunctions related to in vitro MTF application and individual responses to different conditions. Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell cycle, and DNA replication, recombination, and repair. These findings can assist in defining the conditions in which MTF exerts additive or synergistic effects in cancer treatment.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
13
|
Feng L, Liu T, Yang Y, Xiao W, Shi J, Mei X, Tian S, Liu X, Huang H, Bai Y. Metformin promotes proliferation and suppresses apoptosis in Ox-LDL stimulated macrophages by regulating the miR-34a/Bcl2 axis. RSC Adv 2019; 9:14670-14676. [PMID: 35516319 PMCID: PMC9064147 DOI: 10.1039/c9ra00705a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Metformin, an antidiabetic drug, has been reported to be involved in atherosclerosis (AS). In this study, the effects of metformin on oxidized low-density lipoprotein (Ox-LDL)-induced macrophage apoptosis were investigated, and the mechanisms involved in this process were examined. Methods: qRT-qPCR analysis was performed to detect the expression of miR-34a in macrophage cells. Cell proliferation was determined by MTT assays and colony formation assays. Cell apoptosis was assessed by the detection of apoptotic rate and caspase 3 activity. Western blot analysis was performed to evaluate the expression of Bcl2 protein. Results: Metformin treatment promoted proliferation and suppressed apoptosis in macrophages following the treatment of oxidized low-density lipoprotein (Ox-LDL). Metformin could inhibit miR-34a in macrophages. miR-34a overexpression could reverse the effect of metformin on proliferation and apoptosis in Ox-LDL-treated macrophages. Moreover, metformin could increase the expression of the miR-34a target gene Bcl2. Furthermore, metformin treatment exerted the pro-proliferation and anti-apoptosis effect through regulating Bcl2 expression in Ox-LDL-stimulated macrophages. Conclusion: Metformin facilitated proliferation and inhibited apoptosis of macrophages treated with Ox-LDL through the miR-34a/Bcl2 axis, indicating the potential value of metformin in AS therapy.
Collapse
Affiliation(s)
- Liuliu Feng
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Tianhua Liu
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Yuya Yang
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Wenying Xiao
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Jun Shi
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Xiang Mei
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Songmei Tian
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Xinbing Liu
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Hongman Huang
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| | - Yanyan Bai
- Department of Cardiology, Shidong Hospital Yangpu District Shanghai 200438 China +86-021-25066666-13101
| |
Collapse
|
14
|
Pan J, Alimujiang M, Chen Q, Shi H, Luo X. Exosomes derived from miR‐146a‐modified adipose‐derived stem cells attenuate acute myocardial infarction−induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 2018; 120:4433-4443. [PMID: 30362610 DOI: 10.1002/jcb.27731] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Junjie Pan
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Maimaitijiang Alimujiang
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Qiying Chen
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Haiming Shi
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Xinping Luo
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| |
Collapse
|