1
|
Eslami-Farsani R, Farhadian S, Shareghi B, Asgharzadeh S, Behjati Moghaddam M, Momeni L, Assaran-Darban R, Evini M. Evaluation of the structure and stability of myoglobin after interaction with ribose: spectroscopic and molecular simulation approach. J Biomol Struct Dyn 2025:1-12. [PMID: 40314693 DOI: 10.1080/07391102.2025.2499223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/24/2024] [Indexed: 05/03/2025]
Abstract
Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (Tm) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | | | - Lida Momeni
- Department of Biology, Faculty of Science, University of Payam Noor, Tehran, Iran
| | - Reza Assaran-Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Pantelic L, Skaro Bogojevic S, Andrejević TP, Pantović BV, Marković VR, Ašanin DP, Milanović Ž, Ilic-Tomic T, Nikodinovic-Runic J, Glišić BĐ, Lazic J. Copper(II) and Zinc(II) Complexes with Bacterial Prodigiosin Are Targeting Site III of Bovine Serum Albumin and Acting as DNA Minor Groove Binders. Int J Mol Sci 2024; 25:8395. [PMID: 39125963 PMCID: PMC11313072 DOI: 10.3390/ijms25158395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Tina P. Andrejević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Bojana V. Pantović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Violeta R. Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Darko P. Ašanin
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Biljana Đ. Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| |
Collapse
|
3
|
Jalan A, Sangeet S, Pradhan AK, Moyon NS. Exploring the interaction of a potent anti-cancer drug Selumetinib with bovine serum albumin: Spectral and computational attributes. J Mol Recognit 2024; 37:e3084. [PMID: 38596890 DOI: 10.1002/jmr.3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The binding of drugs to plasma proteins determines its fate within the physiological system, hence profound understanding of its interaction within the bloodstream is important to understand its pharmacodynamics and pharmacokinetics and thereby its therapeutic potential. In this regard, our work delineates the mechanism of interaction of Selumetinib (SEL), a potent anti-cancer drug showing excellent effect against multiple solid tumors, with plasma protein bovine serum albumin (BSA), using methods such as absorption, steady-state fluorescence, time-resolved, fluorescence resonance energy transfer, Fourier transform infrared spectra (FTIR), circular dichroism (CD), synchronous and 3D-fluorescence, salt fluorescence, molecular docking and molecular dynamic simulations. The BSA fluorescence intensity was quenched with increasing concentration of SEL which indicates interactions of SEL with BSA. Stern-Volmer quenching analysis and lifetime studies indicate the involvement of dynamic quenching. However, some contributions from the static quenching mechanism could not be ruled out unambiguously. The association constant was found to be 5.34 × 105 M-1 and it has a single binding site. The Förster distance (r) indicated probable energy transmission between the BSA and SEL. The positive entropy changes and enthalpy change indicate that the main interacting forces are hydrophobic forces, also evidenced by the results of molecular modeling studies. Conformation change in protein framework was revealed from FTIR, synchronous and 3D fluorescence and CD studies. Competitive binding experiments as well as docking studies suggest that SEL attaches itself to site I (subdomain IIA) of BSA where warfarin binds. Molecular dynamic simulations indicate the stability of the SEL-BSA complex. The association energy between BSA and SEL is affected in the presence of different metals differently.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Silchar, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Amit Kumar Pradhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Silchar, India
| |
Collapse
|
4
|
Shi M, He J, Xu M, Lin X, Liu H, Jiang T, Yi Z. Interactions between polycyclic musks and human lactoferrin: Multi-spectroscopic methods and docking simulation. J Mol Recognit 2023; 36:e3005. [PMID: 36573888 DOI: 10.1002/jmr.3005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Galaxolide (1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-γ-2-benzopyrane; HHCB) and Tonalide (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene; AHTN) are "pseudo-persistent" pollutants that can cause DNA damage, endocrine disruption, organ toxicity, and reproductive toxicity in humans. HHCB and AHTN are readily enriched in breast milk, so exposure of infants to HHCB and AHTN is of concern. Here, the molecular mechanisms through which HHCB and AHTN interact with human lactoferrin (HLF) are investigated using computational simulations and spectroscopic methods to identify indirectly how HHCB and AHTN may harm infants. Molecular docking and kinetic simulation studies indicated that HHCB and AHTN can interact with and alter the secondary HLF structure. The fluorescence quenching of HLF by HHCB, AHTN was static with the forming of HLF-HHCB, HLF-AHTN complex, and accompanied by non-radiative energy transfer and that 1:1 complexes form through interaction forces. Time-resolved fluorescence spectroscopy indicated that binding to small molecules does not markedly change the HLF fluorescence lifetime. Three-dimensional fluorescence spectroscopy indicated that HHCB and AHTN alter the peptide chain backbone structure of HLF. Ultraviolet-visible absorption spectroscopy, simultaneous fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and circular dichroism spectroscopy indicated that HHCB and AHTN change the secondary HLF conformation. Antimicrobial activity experiments indicated that polycyclic musks decrease lactoferrin activity and interact with HLF. These results improve our understanding of the mechanisms involved in the toxicities of polycyclic musks bound to HLF at the molecular level and provide theoretical support for mother-and-child health risk assessments.
Collapse
Affiliation(s)
- Mengjie Shi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Jinfeng He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Minhua Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Xiaolian Lin
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China.,South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, People's Republic of China
| | - Tiemin Jiang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China.,South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, People's Republic of China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
5
|
Fluorinated N-quinoxaline-based boron complexes: Synthesis, photophysical properties, and selective DNA/BSA biointeraction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Xu YD, Tian L, Lai RY, Li Z, Procházková E, Ho J, Stenzel MH. Development of an Albumin–Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjug Chem 2022; 33:321-332. [DOI: 10.1021/acs.bioconjchem.1c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- You Dan Xu
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Rebecca Yong Lai
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Zihao Li
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
7
|
Generation of a transducible version of a bioactive recombinant human TBX5 transcription factor from E. Coli. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Sen Chowdhury M, Sarkar A, Rai SR, Dasgupta S, Majumder I, Bhattacharya A, Das D, Bose D, Mukhopadhyay J, Mukhopadhyay M. Probing the binding interaction of zinc (II) Schiff bases with bovine serum albumin: A spectroscopic and molecular docking study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Megha Sen Chowdhury
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700156 India
| | - Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700156 India
| | - Sanchari Dasgupta
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Ishani Majumder
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Abir Bhattacharya
- Department of Physics, The Bhawanipur Education Society College University of Calcutta Kolkata 700020 India
| | - Debasis Das
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Debosreeta Bose
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| | - Jayanta Mukhopadhyay
- Energy Materials and Devices Division CSIR‐Central Glass and Ceramic Research Institute Kolkata 700 032 India
| | - Madhumita Mukhopadhyay
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| |
Collapse
|
9
|
Gu J, Liu L, Zheng S, Yang G, He Q, Huang X, Guo C. Investigation of the binding interactions between 17α-ethinylestradiol with bovine serum albumin by multispectroscopy. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1131-1140. [PMID: 32515655 DOI: 10.1080/10934529.2020.1776035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
To understand the effect of 17α-ethinylestradiol (EE2) on the conformation changes of bovine serum albumin (BSA), the binding mechanisms of EE2 with BSA were investigated by fluorescence spectroscopy, time-resolved fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, UV-visible spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. The quenching constants, binding constants, the number of binding sites, thermodynamic parameters, binding distance and the secondary structure changes of BSA were determined. The results of fluorescence quenching experiment suggested that the fluorescence quenching of BSA by EE was due to the formation of complex through static quenching, which was also confirmed by time-resolved fluorescence measurements. The thermodynamic parameters indicated that the binding of EE2 to BSA was driven mainly by van der Waals forces and hydrogen bonding. The conformation alterations of BSA upon EE2 binding were studied by UV-vis spectroscopy and CD spectroscopy. The results of site marker competitive experiments and molecular docking showed that the binding sites of EE2 were mainly located within site I in the subdomain IIA of BSA.
Collapse
Affiliation(s)
- Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Lu Liu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Siyao Zheng
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Gang Yang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Qian He
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Xiyao Huang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, P.R. China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning, Shihua University, Fushun, P.R. China
| |
Collapse
|
10
|
Shaghaghi M, Dehghan G, Rashtbari S, Sheibani N, Aghamohammadi A. Multispectral and computational probing of the interactions between sitagliptin and serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117286. [PMID: 31302563 DOI: 10.1016/j.saa.2019.117286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
The binding of sitagliptin (SIT), an anti-diabetic drug, to human and bovine serum albumin (HSA and BSA; main serum transport proteins) was investigated using various spectroscopic and molecular docking techniques. The fluorescence data demonstrated that SIT quenched inherent fluorescence of these proteins through the formation of SIT-HSA/BSA complexes. The number of binding sites was obtained (~1) and binding constant (Kb) and effective quenching constant (Ka) were calculated as 104 for both systems. Based on thermodynamic parameters, the van der Waals forces and hydrogen bonding were the most important forces in the interactions between HSA/BSA and SIT, and the complex formation processes were spontaneous. The results of UV-vis absorption and FT-IR spectroscopic revealed that SIT induces small conformational changes in the structure of the proteins (HSA/BSA). The synchronous fluorescence (SF) spectroscopy demonstrated that the binding of SIT with HSA/BSA had no effect on the polarity around Trp and Tyr residues. The CD spectra showed changes in the secondary and tertiary structures of both proteins with a decrease in α-helices contents and an increase in β-turn structures. The molecular docking and spectroscopic data verified the binding mechanisms between SIT and HSA/BSA, and revealed that SIT completely fits into the hydrophobic cavity between domain II and domain III of these proteins.
Collapse
Affiliation(s)
- Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Azam Aghamohammadi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| |
Collapse
|