1
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Ahmed-de-Prado S, Estella C, Baonza A. Temporal dynamics of apoptosis-induced proliferation in pupal wing development: implications for regenerative ability. BMC Biol 2024; 22:98. [PMID: 38679694 PMCID: PMC11057159 DOI: 10.1186/s12915-024-01894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury. While significant research has focused on investigating regenerative responses during larval stages our comprehension of the regenerative potential of pupal wings and the underlying mechanisms contributing to the decline of regenerative responses remains limited. RESULTS Here, we explore the temporal dynamics during pupal development of the proliferative response triggered by the induction of cell death, a typical regenerative response. Our results indicate that the apoptosis-induced proliferative response can continue until 34 h after puparium formation (APF), beyond this point cell death alone is not sufficient to induce a regenerative response. Under normal circumstances, cell proliferation ceases around 24 h APF. Interestingly, the failure of reinitiating the cell cycle beyond this time point is not attributed to an incapacity to activate the JNK pathway. Instead, our results suggest that the function of the ecdysone-responsive transcription factor E93 is involved in limiting the apoptosis-induced proliferative response during pupal development. CONCLUSIONS Our study shows that apoptosis can prolong the proliferative period of cells in the wing during pupal development as late as 34 h APF, at least 10 h longer than during normal development. After this time point, the regenerative response is diminished, a process mediated in part by the ecdysone-responsive transcription factor E93.
Collapse
Affiliation(s)
| | - Carlos Estella
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), C/Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), C/Nicolás Cabrera 1, Madrid, 28049, Spain.
| |
Collapse
|
3
|
de Lima FMR, Abrahão I, Pentagna N, Carneiro K. Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Dev Dyn 2023; 252:343-362. [PMID: 36205096 DOI: 10.1002/dvdy.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Animal regeneration is a fascinating field of research that has captured the attention of many generations of scientists. Among the cellular mechanisms underlying tissue and organ regeneration, we highlight the role of phagocytic ameboid cells (PACs). Beyond their ability to engulf nutritional particles, microbes, and apoptotic cells, their involvement in regeneration has been widely documented. It has been extensively described that, at least in part, animal regenerative mechanisms rely on PACs that serve as a hub for a range of critical physiological functions, both in health and disease. Considering the phylogenetics of PAC evolution, and the loss and gain of nutritional, immunological, and regenerative potential across Metazoa, we aim to discuss when and how phagocytic activity was first co-opted to regenerative tissue repair. We propose that the gradual specialization of PACs during metazoan derivation may have contributed to the loss of regenerative potential in animals, with critical impacts on potential translational strategies for regenerative medicine.
Collapse
Affiliation(s)
- Felipe Matheus Ribeiro de Lima
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Abrahão
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Worley MI, Hariharan IK. Imaginal Disc Regeneration: Something Old, Something New. Cold Spring Harb Perspect Biol 2022; 14:a040733. [PMID: 34872971 PMCID: PMC9620854 DOI: 10.1101/cshperspect.a040733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Imaginal discs are simple epithelial sacs found in Drosophila larvae, which generate adult structures including wings and legs. The first studies of imaginal disc regeneration involved technically challenging transplantation experiments. Yet despite the difficulty, many aspects of regeneration including wound healing, blastema formation, and the repatterning of regenerated tissue were characterized. An important discovery was the phenomenon of transdetermination, where a small group of cells in regenerating tissue collectively switch fate ("collective cell reprogramming"). The development of genetic tissue-ablation systems over the last 12 years has energized this field, by making experiments less technically challenging, more reproducible, and by incorporating additional genetic analysis. Recent progress includes defining mechanistic links between early responses to wounding and the signaling pathways that drive proliferation, uncovering a role for localized silencing of damage-responsive enhancers to limit regenerative capacity as tissues mature, and identifying genes that maintain cellular plasticity within acceptable limits during regeneration.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| |
Collapse
|
5
|
Catalani E, Cherubini A, Del Quondam S, Cervia D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int J Mol Sci 2022; 23:ijms23158180. [PMID: 35897754 PMCID: PMC9331597 DOI: 10.3390/ijms23158180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
A detailed knowledge of the status of the retina in neurodegenerative conditions is a crucial point for the development of therapeutics in retinal pathologies and to translate eye research to CNS disease. In this context, manipulating signaling pathways that lead to neuronal regeneration offers an excellent opportunity to substitute damaged cells and, thus, restore the tissue functionality. Alternative systems and methods are increasingly being considered to replace/reduce in vivo approaches in the study of retina pathophysiology. Herein, we present recent data obtained from the zebrafish (Danio rerio) and the fruit fly Drosophila melanogaster that bring promising advantages into studying and modeling, at a preclinical level, neurodegeneration and regenerative approaches in retinal diseases. Indeed, the regenerative ability of vertebrate model zebrafish is particularly appealing. In addition, the fruit fly is ideal for regenerative studies due to its high degree of conservation with vertebrates and the broad spectrum of genetic variants achievable. Furthermore, a large part of the drosophila brain is dedicated to sight, thus offering the possibility of studying common mechanisms of the visual system and the brain at once. The knowledge acquired from these alternative models may help to investigate specific well-conserved factors of interest in human neuroregeneration after injuries or during pathologies.
Collapse
|
6
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Xu Y, Wei W, Lin G, Yan S, Zhang J, Shen J, Wang D. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103552. [PMID: 33577967 DOI: 10.1016/j.ibmb.2021.103552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wei Wei
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Almudi I, Martín-Blanco CA, García-Fernandez IM, López-Catalina A, Davie K, Aerts S, Casares F. Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo 2019; 10:6. [PMID: 30984364 PMCID: PMC6446309 DOI: 10.1186/s13227-019-0120-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
The great capability of insects to adapt to new environments promoted their extraordinary diversification, resulting in the group of Metazoa with the largest number of species distributed worldwide. To understand this enormous diversity, it is essential to investigate lineages that would allow the reconstruction of the early events in the evolution of insects. However, research on insect ecology, physiology, development and evolution has mostly focused on few well-established model species. The key phylogenetic position of mayflies within Paleoptera as the sister group of the rest of winged insects and life history traits of mayflies make them an essential order to understand insect evolution. Here, we describe the establishment of a continuous culture system of the mayfly Cloeon dipterum and a series of experimental protocols and omics resources that allow the study of its development and its great regenerative capability. Thus, the establishment of Cloeon as an experimental platform paves the way to understand genomic and morphogenetic events that occurred at the origin of winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| | | | | | | | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Louvain, Belgium.,3Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Louvain, Belgium
| | - Fernando Casares
- 1GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013 Seville, Spain
| |
Collapse
|
10
|
Narbonne-Reveau K, Maurange C. Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biol 2019; 17:e3000149. [PMID: 30742616 PMCID: PMC6386533 DOI: 10.1371/journal.pbio.3000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/22/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
In many organisms, the regenerative capacity of tissues progressively decreases as development progresses. However, the developmental mechanisms that restrict regenerative potential remain unclear. In Drosophila, wing imaginal discs become unable to regenerate upon damage during the third larval stage (L3). Here, we show that production of ecdysone after larvae reach their critical weight (CW) terminates the window of regenerative potential by acting on a bistable loop composed of two antagonistic Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (ZBTB) genes: chinmo and broad (br). Around mid L3, ecdysone signaling silences chinmo and activates br to switch wing epithelial progenitors from a default self-renewing to a differentiation-prone state. Before mid L3, Chinmo promotes a strong regenerative response upon tissue damage. After mid L3, Br installs a nonpermissive state that represses regeneration. Transient down-regulation of ecdysone signaling or Br in late L3 larvae enhances chinmo expression in damaged cells that regain the capacity to regenerate. This work unveils a mechanism that ties the self-renewing and regenerative potential of epithelial progenitors to developmental progression. This study finds that the loss of regeneration potential in Drosophila wing imaginal discs is induced by the production of the steroid hormone ecdysone after the larva reaches its critical weight. Manipulating ecdysone signaling or the downstream transcription factors can uncouple regenerative properties from developmental progression. While some organisms exhibit remarkable regenerative abilities throughout their life, many animals, including mammals, present limited regenerative potential that progressively decreases during development. Understanding the mechanisms underlying this progressive loss is important to devise therapeutic approaches aiming at facilitating the regeneration of a damaged tissue throughout life. The fruitfly Drosophila is a powerful model organism to address such questions. Indeed, while tissues, such as imaginal discs, can fully regenerate if damaged during early development, they fail to do so upon damages during late development. We show here that restriction of regenerative potential occurring during midlarval stages is due to the production of a steroid hormone, named ecdysone. By genetically manipulating ecdysone signaling, we can uncouple regenerative abilities from developmental progression. In particular, we show that ecdysone signaling triggers a switch in the sequential expression of two transcription factors, Chinmo and Broad, that positively and negatively regulate the competence for imaginal disc regeneration, respectively. Our work therefore identifies a key developmental signal that restricts regenerative potential in insects and opens new perspectives on elucidating how regeneration-permissive transcriptional programs are locked as development progresses.
Collapse
Affiliation(s)
| | - Cédric Maurange
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|