1
|
Xiang YT, Ma J, Wu JJ, Xue X, Gao X, Hua XY, Zheng MX, Xu JG. Brain-thyroid crosstalk: 18F-FDG-PET/MRI evidence in patients with follicular thyroid adenomas. Brain Res Bull 2025; 224:111324. [PMID: 40157550 DOI: 10.1016/j.brainresbull.2025.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE The hypothalamic-pituitary-thyroid axis has been well-known. However, whether follicular thyroid adenoma (FTA) could affect brain glucose metabolism is still unknown. Therefore, we explored the brain glucose metabolic characteristics of FTA with Fluorodeoxyglucose F18 positron emission tomography/magnetic resonance imaging. METHODS Totally 30 FTA patients without clinical symptoms (FTA group), and 60 age- and sex-matched healthy controls (HC group) were included and randomly divided into cohort A and B in 2:1 ratio. Cohort A was analyzed with scaled sub-profile model/principal component analysis (SSM/PCA) for pattern identification. Cohort B was calculated the individual scores to validate expression of the pattern. Then we calculated the metabolic connectivity based on characteristics of the pattern to investigate the underlying mechanism. Finally, we constructed metabolic brain networks and analyzed the topological properties to further explore the brain metabolic model. RESULTS In SSM/PCA, FTA group showed an almost global, left-right symmetrical pattern. In metabolic connectivity, FTA group showed increased metabolic connectivity in brain regions of the sensorimotor network, ventral default mode network (DMN), posterior salient network, right executive control network (ECN), visuospatial network and language network when compared to HC group, and showed decreased connectivity in dorsal DMN and left ECN. In topological properties of brain network, FTA group showed an increased betweenness centrality (BC) in left rolandic operculum, a decreased BC in superior temporal gyrus, increased BC and Degree in right precentral gyrus, increased D in right parahippocampal gyrus and left hippocampus, and decreased D and efficiency in right orbital part of middle frontal gyrus (FDR correction for multiple comparisons, P < 0.05). CONCLUSION Although FTA patients are not yet symptomatic, their brain metabolic characteristics include extensive brain alterations, disrupted internal connectivity, not only involving brain regions associated with endocrine activity, but also brain networks and regions associated with motor, emotion and cognition.
Collapse
Affiliation(s)
- Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China
| | - Jie Ma
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xue
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Gao
- Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Traumatology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Traumatology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Xing Y, Si L, Wang Y, Zhang W, Ling X, Yang X. Altered Functional Connectivity of the Multisensory Vestibular Cortex in Patients with Chronic Unilateral Vestibulopathy. Brain Connect 2024; 14:252-259. [PMID: 38625114 DOI: 10.1089/brain.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Background: Chronic unilateral vestibulopathy (CUVP) is a common chronic vestibular syndrome; the mechanisms of central vestibular compensation in CUVP are rarely studied. Methods: This study analyzed the data of 18 patients with CUVP and 18 healthy controls (HCs) and used seed-based functional connectivity (FC) and voxel-mirrored homotopic connectivity (VMHC) analyses to explore the FC alterations. Results: Compared with HCs, patients with CUVP showed decreased FC between the left dorsolateral superior frontal gyrus and the right hippocampus; the left middle frontal gyrus and the right posterior cingulate gyrus, the right hippocampus, the right parahippocampal gyrus. There is also a reduction in FC between the left and right insula. There was enhanced FC between the left supplementary motor area (SMA) and the bilateral superior occipital gyrus, the left hippocampus and the left posterior cingulate gyrus, as well as a the left middle temporal gyrus (p = 0.03). Additionally,VMHC was decreased between the bilateral medial superior frontal gyrus, the bilateral precentral gyrus, and the bilateral postcentral gyrus (p = 0.001). The zVMHC values in the bilateral superior frontal gyrus and the precentral gyrus were both negatively corrected with the Dizziness Handicap Inventory (DHI) score.well as Conclusions: Altered FC in regions of bilateral multisensory vestibular cortex existed in patients with CUVP. Decreased FC and VMHC in the bilateral multisensory vestibular cortex may affect vestibular information integration, thus affecting self-motion perception, spatial orientation, and postural control.
Collapse
Affiliation(s)
- Yue Xing
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| | - Lihong Si
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| | - Yuru Wang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| | - Wanting Zhang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| | - Xia Ling
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| | - Xu Yang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine (Aerospace Center Hospital), Beijing, China
| |
Collapse
|
3
|
Tesfaye E, Getnet M, Anmut Bitew D, Adugna DG, Maru L. Brain functional connectivity in hyperthyroid patients: systematic review. Front Neurosci 2024; 18:1383355. [PMID: 38726033 PMCID: PMC11080614 DOI: 10.3389/fnins.2024.1383355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Functional connectivity (FC) is the correlation between brain regions' activities, studied through neuroimaging techniques like fMRI. It helps researchers understand brain function, organization, and dysfunction. Hyperthyroidism, characterized by high serum levels of free thyroxin and suppressed thyroid stimulating hormone, can lead to mood disturbance, cognitive impairment, and psychiatric symptoms. Excessive thyroid hormone exposure can enhance neuronal death and decrease brain volume, affecting memory, attention, emotion, vision, and motor planning. METHODS We conducted thorough searches across Google Scholar, PubMed, Hinari, and Science Direct to locate pertinent articles containing original data investigating FC measures in individuals diagnosed with hyperthyroidism. RESULTS The systematic review identified 762 articles, excluding duplicates and non-matching titles and abstracts. Four full-text articles were included in this review. In conclusion, a strong bilateral hippocampal connection in hyperthyroid individuals suggests a possible neurobiological influence on brain networks that may affect cognitive and emotional processing. SYSTEMATIC REVIEW REGISTRATION PROSPERO, CRD42024516216.
Collapse
Affiliation(s)
- Ephrem Tesfaye
- Department of Biomedical Sciences, Madda Walabu University Goba Referral Hospital, Bale-Robe, Ethiopia
| | - Mihret Getnet
- Department of Human Physiology, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Desalegn Anmut Bitew
- Department of Reproductive Health, Institute of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Dagnew Getnet Adugna
- Department of Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Lemlemu Maru
- Department of Human Physiology, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Wu J, Wu J, Guo R, Chu L, Li J, Zhang S, Ren H. The decreased connectivity in middle temporal gyrus can be used as a potential neuroimaging biomarker for left temporal lobe epilepsy. Front Psychiatry 2022; 13:972939. [PMID: 36032260 PMCID: PMC9399621 DOI: 10.3389/fpsyt.2022.972939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We aimed to explore voxel-mirrored homotopic connectivity (VMHC) abnormalities between the two brain hemispheres in left temporal lobe epilepsy (lTLE) patients and to determine whether these alterations could be leveraged to guide lTLE diagnosis. MATERIALS AND METHODS Fifty-eight lTLE patients and sixty healthy controls (HCs) matched in age, sex, and education level were recruited to receive resting state functional magnetic resonance imaging (rs-fMRI) scan. Then VHMC analyses of bilateral brain regions were conducted based on the results of these rs-fMRI scans. The resultant imaging data were further analyzed using support vector machine (SVM) methods. RESULTS Compared to HCs, patients with lTLE exhibited decreased VMHC values in the bilateral middle temporal gyrus (MTG) and middle cingulum gyrus (MCG), while no brain regions in these patients exhibited increased VMHC values. SVM analyses revealed the diagnostic accuracy of reduced bilateral MTG VMHC values to be 75.42% (89/118) when differentiating between lTLE patients and HCs, with respective sensitivity and specificity values of 74.14% (43/58) and 76.67% (46/60). CONCLUSION Patients with lTLE exhibit abnormal VMHC values corresponding to the impairment of functional coordination between homotopic regions of the brain. These altered MTG VMHC values may also offer value as a robust neuroimaging biomarker that can guide lTLE patient diagnosis.
Collapse
Affiliation(s)
- Jinlong Wu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Guo
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Linkang Chu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kumar M, Rana P, Modi S, Tyagi R, Kaur P, Kanwar R, Sekhri T, D'souza M, Khushu S. Aberrant intra and inter network resting state functional connectivity in thyrotoxicosis. J Neuroendocrinol 2019; 31:e12683. [PMID: 30600576 DOI: 10.1111/jne.12683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Abstract
Thyroid hormones epigenetically play an important role in the regularisation of neural networks and in neural differentiation during brain development. The present study aimed to explore the intra and inter network resting state functional connectivity changes underlying the neurobehavioural symptoms in thyrotoxicosis. To understand the pathophysiological changes, we investigated the correlation between functional connectivity and clinical and behavioural measures. Twenty-eight freshly diagnosed thyrotoxicosis patients suffering with symptoms such as palpitation, loss of weight, trembling and heat intolerance from days to weeks and 28 healthy controls were recruited for the study. Thyrotoxicosis patients showed significantly decreased functional connectivity in sensorimotor network, fronto-temporal network, default mode network, right fronto-parietal network, left fronto-parietal network and salience network. Inter network functional connectivity was significantly reduced between the basal ganglia network and sensorimotor network and increased between the salience network and fronto-temporal network in thyrotoxicosis. Cognitive functions such as visual retention, recognition of objects, mental balance and performance on neuropsychological tests (ie, the Bender Gestalt test, Nahar-Benson test and Mini Mental State Examination) also showed significant decline in thyrotoxicosis patients. The altered intrinsic resting state functional connectivity might underlie these cognitive deficits. The increased functional connectivity between the salience network and fronto-temporal network suggests the recruitment of additional neuronal circuitry needed to compensate for the neuropathology in the primary neural network in thyrotoxicosis.
Collapse
Affiliation(s)
- Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Shilpi Modi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Ritu Tyagi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Prabhjot Kaur
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | | | - Tarun Sekhri
- Thyroid Research Centre, INMAS, DRDO, New Delhi, India
| | - Maria D'souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| |
Collapse
|