1
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
2
|
Wang M, Xu H, Xiong X, Chang L, Zhang K, Zhou Y, Zhang F, Awadasseid A, Zhang W. Antiproliferative activity of selenium-enriched coumarin derivatives on the SK-N-SH neuroblastoma cell line: Mechanistic insights. Eur J Med Chem 2025; 286:117322. [PMID: 39884097 DOI: 10.1016/j.ejmech.2025.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Thirty selenium-containing coumarin derivatives were synthesized and evaluated for inhibitory activity against 17 malignant tumor cell lines. Among these, compound 11i demonstrated the most potent inhibition of neuroblastoma SK-N-SH cells, with an IC50 of 2.5 ± 0.1 μM. Compound 11i notably inhibited SK-N-SH cell proliferation, migration, and invasion. Western blot and immunofluorescence analyses indicated that 11i increased the Bax/Bcl-2 protein expression ratio, promoted Cytochrome C release from mitochondria, and activated caspases 9 and 3, triggering the mitochondria-mediated apoptotic pathway and inducing endogenous tumor cell apoptosis. The compounds localized in the cytoplasm and co-localized with mitochondria, suggesting mitochondrial interaction and dysfunction. Computational docking studies revealed a strong binding affinity of 11i with Bcl-2 and mitochondrial G-quadruplexes. In a subcutaneous neuroblastoma-bearing mouse model, 11i showed notable anti-tumor efficacy with tumor inhibition rates of 79 % (10 mg/kg) and 93 % (20 mg/kg), exceeding that of cyclophosphamide. This study represents a novel finding on the anti-tumor activity of selenium-containing coumarin derivatives and provides a theoretical basis for developing coumarin-based therapeutics for neuroblastoma.
Collapse
Affiliation(s)
- Ming Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Haoran Xu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Xuqiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Linru Chang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Koutian Zhang
- Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou, 311121, China
| | - Yongnan Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou, 311121, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China.
| |
Collapse
|
3
|
Zhang Y, Sun H, Ji Y, Nie F, Wang R, Han W. Effects of aspirin on colon cancer using quantitative proteomic analysis. CANCER PATHOGENESIS AND THERAPY 2024; 2:121-131. [PMID: 38601481 PMCID: PMC11002747 DOI: 10.1016/j.cpt.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 04/12/2024]
Abstract
Background Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis. Methods We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein-protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 cells exposed to aspirin using fluorescence-activated cell sorting (FACS). Results We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, P < 0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 cells (95% CI: -0.619 to -0.364, P < 0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, P < 0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, P < 0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner. Conclusions These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53-CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Rong Wang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
4
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
5
|
Ramalingam PS, Priyadharshini A, Emerson IA, Arumugam S. Potential biomarkers uncovered by bioinformatics analysis in sotorasib resistant-pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 10:1107128. [PMID: 37396909 PMCID: PMC10310804 DOI: 10.3389/fmed.2023.1107128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.
Collapse
Affiliation(s)
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Yeh TJ, Luo CW, Du JS, Huang CT, Wang MH, Chuang TM, Gau YC, Cho SF, Liu YC, Hsiao HH, Chen LT, Pan MR, Wang HC, Moi SH. Deciphering the Functions of Telomerase Reverse Transcriptase in Head and Neck Cancer. Biomedicines 2023; 11:691. [PMID: 36979671 PMCID: PMC10044978 DOI: 10.3390/biomedicines11030691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers (HNCs) are among the ten leading malignancies worldwide. Despite significant progress in all therapeutic modalities, predictive biomarkers, and targeted therapies for HNCs are limited and the survival rate is unsatisfactory. The importance of telomere maintenance via telomerase reactivation in carcinogenesis has been demonstrated in recent decades. Several mechanisms could activate telomerase reverse transcriptase (TERT), the most common of which is promoter alternation. Two major hotspot TERT promoter mutations (C228T and C250T) have been reported in different malignancies such as melanoma, genitourinary cancers, CNS tumors, hepatocellular carcinoma, thyroid cancers, sarcomas, and HNCs. The frequencies of TERT promoter mutations vary widely across tumors and is quite high in HNCs (11.9-64.7%). These mutations have been reported to be more enriched in oral cavity SCCs and HPV-negative tumors. The association between TERT promoter mutations and poor survival has also been demonstrated. Till now, several therapeutic strategies targeting telomerase have been developed although only a few drugs have been used in clinical trials. Here, we briefly review and summarize our current understanding and evidence of TERT promoter mutations in HNC patients.
Collapse
Affiliation(s)
- Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hung Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer. Arch Biochem Biophys 2023; 735:109500. [PMID: 36608915 DOI: 10.1016/j.abb.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The major cause of colorectal cancer (CRC) related mortality is due to its metastasis. Signaling pathways play a definite role in the development and progression of CRC. Recent studies demonstrate that the regulation of the sonic hedgehog (Shh) pathway is beneficial in the CRC treatment strategy. Also, 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a well-known regulator of metabolism and inflammation, making it a suitable treatment option for CRC. Consumption of a high-fat diet (HFD) is a significant cause of CRC genesis. Also, the lipids play an indispensable role in aberrant activation of the Shh pathway. This review explains in detail the interconnection between HFD consumption, Shh pathway activation, and the progression of CRC. According to recent studies and literature, AMPK is a potential regulator that can control the complexities of CRC and reduce lipid levels and may directly inhibit shh signalling. The review also suggests the possible risk elements of AMPK activation in CRC due to its context-dependent role. Also, the activation of AMPK in HFD-induced CRC may modulate cancer progression by regulating the Shh pathway and metabolism.
Collapse
Affiliation(s)
- T B Beena
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mathew A Jesil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| |
Collapse
|
8
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
9
|
Characterization of G-Quadruplexes in Enterovirus A71 Genome and Their Interaction with G-Quadruplex Ligands. Microbiol Spectr 2022; 10:e0046022. [PMID: 35446122 PMCID: PMC9241713 DOI: 10.1128/spectrum.00460-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human enteroviruses cause many diseases; however, there is no specific therapeutic drug. G-quadruplex is an atypical secondary structure formed in the guanine rich region of DNA or RNA, which can exist in the viral genome. The different positions of G-quadruplex play an important role in the regulation of virus replication and infection. Whether G-quadruplexes are present in human enteroviruses is unknown. In current study, we analyzed the potential quadruplex forming sequences of human enteroviruses, especially EV-A71 virus, which causes hand, foot, and mouth disease. The results showed that there were a certain number of potential quadruplex-forming sequences in human enteroviruses. Through a variety of experimental methods, we evaluated the formation potential of EV-A71 encoded G-quadruplex and analyzed the binding ability of G-quadruplex ligands, including BRACO-19, pyridostatin and TMPyP4 to virus encoded G-quadruplexes. G-quadruplex ligands BRACO-19, PDS and TMPyP4 could inhibit the transcription of constructs containing EV-A71 G-quadruplex sequences. Moreover, we found that BRACO-19 was able to inhibit the replication of EV-A71, suggesting that targeting G-quadruplexes in EV-A71 genome by G-quadruplex ligands could be a novel antiviral way against EV-A71. Our finding not only uncovered the G-quadruplexes in human enteroviruses, but also would provide a new strategy for human enteroviruses therapy. IMPORTANCE G-quadruplex is a stable nucleic acid secondary structure formed by the folding of guanine rich nucleic acid. The important regulatory function of G-quadruplex makes it an attractive target of antiviral effect. Human enteroviruses cause a variety of human diseases, including common cold, nervous system diseases, cardiovascular damage, and diabetes. Enterovirus A71 (EV-A71) is one of pathogens causing hand, foot, and mouth disease; however, whether G-quadruplexes are present in the genomes of human enteroviruses is unknown. The function of G-quadruplexes in the EV-A71 genomes is not clear. We predicted and characterized G-quadruplex sequences in EV-A71. G-quadruplex ligands were identified to stabilize EV-A71 G-quadruplexes with high affinities. We also demonstrated G-quadruplex ligand BRACO-19 inhibited EV-A71 replication. Our studies provide a framework for targeting G-quadruplexes in the enteroviruses genome, which will be a new way to develop antiviral agents against human enteroviruses.
Collapse
|
10
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
11
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
13
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
14
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75-85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
15
|
Li GH, Ma ZH, Wang X. Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin signaling pathway. Cell Cycle 2019; 18:2902-2913. [PMID: 31599709 DOI: 10.1080/15384101.2019.1662257] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks as the sixth most common carcinoma worldwide, and the third most common carcinoma in developing countries as well. Recently, the aberrant expression of lncRNA CCAT1 has been revealed to play an important role in the development of several cancers. However, its role in OSCC remains unknown. The expression levels of CCAT1 and miR-181a were determined in 15 paired primary OSCC tissues and their adjacent noncancerous tissues and cell lines with qPCR. shRNA against CCAT1 was employed to investigate the impact of CCAT1 on proliferation and metastasis. Then dual luciferase reporter and RIP assays were utilized to study the interaction between CCAT1 and miR-181a. Cells transfected with sh-CCAT1 or treated with miR-181a inhibitor were subjected to western blot to investigate the role of Wnt/β-catenin signaling in CCAT1-mediated proliferation and metastasis. Finally, the role of CCAT1 in OSCC was confirmed with tumor xenografts mice model. CCAT1 was upregulated in OSCC tissues and cell lines. Knockdown of CCAT1 inhibited the proliferation, migration and invasion of OSCC cells, while the cell apoptosis was enhanced. Luciferase and RIP assays revealed that miR-181a was a direct target of CCAT1. Inhibition of miR-181a partially reversed the efficacy of sh-CCAT1. Moreover, sh-CCAT1 inhibited OSCC tissues growth through inhibiting Wnt signaling in a miR-181a-dependent manner in vivo. lncRNA CCAT1 activated Wnt/β-catenin signaling via inhibiting miR-181a, resulting in the cell proliferation, migration and invasion of OSCC, suggesting that CCAT1 might serve as a potential target of OSCC treatment. Abbreviation: LncRNA: long non-coding RNA; OSCC: oral squamous cell carcinoma; 3' UTR: 3' untranslated region; ANOVA: one-way analysis of variance; CDK: cyclin-dependent kinase; ceRNA: competing endogenous RNA; FBS: fetal bovine serum; HGF: human gingival fibroblasts; MAPK: mitogen-activated protein kinase; miRNA: micro RNA; ncRNA: noncoding RNAs; PBS: phosphate-buffered saline; PI3K: phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- Guang-Hui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P. R. China
| | - Zhong-Hui Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P. R. China.,The Academy of Medical Science, Zhengzhou University , Zhengzhou , Henan , P. R. China
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P. R. China
| |
Collapse
|