1
|
Patrawalla NY, Liebendorfer K, Kishore V. An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds. Biofabrication 2024; 17:015002. [PMID: 39321844 PMCID: PMC11499585 DOI: 10.1088/1758-5090/ad7f8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml-1), and print flow speed (2, 3 mm s-1)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg ml-1SMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s-1) with 4:1 Col:XG inks and 0.4 mg ml-1SMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Karly Liebendorfer
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Vipuil Kishore
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| |
Collapse
|
2
|
Alhaskawi A, Zhou H, Dong Y, Zou X, Ezzi SHA, Kota VG, Abdulla MHA, Tu T, Alenikova O, Abdalbary S, Lu H. Advancements in 3D-printed artificial tendon. J Biomed Mater Res B Appl Biomater 2024; 112:e35364. [PMID: 38359172 DOI: 10.1002/jbm.b.35364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024]
Abstract
Millions of people have been reported with tendon injuries each year. Unfortunately, Tendon injuries are increasing rapidly due to heavy exercise and a highly aging population. In addition, the introduction of 3D-printing technology in the area of tendon repair and replacement has resolved numerous issues and significantly improved the quality of artificial tendons. This advancement has also enabled us to explore and identify the most effective combinations of biomaterials that can be utilized in this field. This review discusses the recent development of the 3D-printed artificial tendon; where recently, some research investigated the most suitable pore sizes, diameter, and strength for scaffolds to have high tendon cells ingrowth and proliferation, giving a better understanding of the effects of densities and structure patterns on tendon's mechanical properties. In addition, it presents the divergence between 3D-printed tendons and other tissue and how the different 3D-printing techniques and models participated in this development.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Chinese Medicine, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | | | - Vishnu Goutham Kota
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Tian Tu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Olga Alenikova
- Department of Neurology, Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - Sahar Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Mukasheva F, Zhanbassynova A, Erisken C. Biomimetic grafts from ultrafine fibers for collagenous tissues. Biomed Mater Eng 2024; 35:323-335. [PMID: 38393888 DOI: 10.3233/bme-230193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND The ligament is the soft tissue that connects bone to bone and, in case of severe injury or rupture, it cannot heal itself mainly because of its poor vascularity and dynamic nature. Tissue engineering carries the potential to restore the injured tissue functions by utilization of scaffolds mimicking the structure of native ligament. Collagen fibrils in the anterior cruciate ligament (ACL) have a diameter ranging from 20 to 300 nm, which defines the physical and mechanical properties of the tissue. Also, the ACL tissue exhibited a bimodal distribution of collagen fibrils. Currently, the ability to fabricate scaffolds replicating this structure is a significant challenge. OBJECTIVE This work aims at i) measuring the diameter of collagens of bovine ACL tissue, ii) investigating the fabrication of sub-100 nm fibers, and iii) fabricating aligned scaffolds with bimodal diameter distribution (with two peaks) resembling the healthy ACL structure. It is hypothesized that such scaffolds can be produced by electrospinning polycaprolactone (PCL) solutions. METHODS To test the hypothesis, various PCL solutions were formulated in acetone and formic acid in combination with pyridine, and electrospun to generate sub-100 nm fibers. Next, this formulation was adjusted to produce nanofibers with a diameter between 100 nm and 200 nm. Finally, these solutions were combined in the co-electrospinning process, i.e., two-spinneret electrospinning, to fabricate biomimetic scaffolds with a bimodal distribution. RESULTS Electrospinning of 8% and 15% PCL solutions, respectively, resulted in the production of fibers with diameters below and above 100 nm. The combined scaffold exhibited a bimodal distribution of aligned fibers with peaks around 80 and 180 nm, thus mimicking the collagen fibrils of healthy ACL tissue. CONCLUSION This research is expected to have a society-wide impact because it aims to enhance the health condition and life quality of a wide range of patients.
Collapse
Affiliation(s)
- Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Zhanbassynova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Cevat Erisken
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
4
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Liang W, Zhou C, Meng Y, Fu L, Zeng B, Liu Z, Ming W, Long H. An overview of the material science and knowledge of nanomedicine, bioscaffolds, and tissue engineering for tendon restoration. Front Bioeng Biotechnol 2023; 11:1199220. [PMID: 37388772 PMCID: PMC10306281 DOI: 10.3389/fbioe.2023.1199220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Tendon wounds are a worldwide health issue affecting millions of people annually. Due to the characteristics of tendons, their natural restoration is a complicated and lengthy process. With the advancement of bioengineering, biomaterials, and cell biology, a new science, tissue engineering, has developed. In this field, numerous ways have been offered. As increasingly intricate and natural structures resembling tendons are produced, the results are encouraging. This study highlights the nature of the tendon and the standard cures that have thus far been utilized. Then, a comparison is made between the many tendon tissue engineering methodologies proposed to date, concentrating on the ingredients required to gain the structures that enable appropriate tendon renewal: cells, growth factors, scaffolds, and scaffold formation methods. The analysis of all these factors enables a global understanding of the impact of each component employed in tendon restoration, thereby shedding light on potential future approaches involving the creation of novel combinations of materials, cells, designs, and bioactive molecules for the restoration of a functional tendon.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
6
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
7
|
Jain C, Surabhi P, Marathe K. Critical Review on the Developments in Polymer Composite Materials for Biomedical Implants. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:893-917. [PMID: 36369719 DOI: 10.1080/09205063.2022.2145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.
Collapse
Affiliation(s)
| | | | - Kumudinee Marathe
- Department of Chemical Engg, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India 400019
| |
Collapse
|
8
|
Adeoye AO, Mukasheva F, Smatov S, Khumyrzakh B, Kadyr S, Shulgau Z, Erisken C. A biomimetic synthetic nanofiber-based model for anterior cruciate ligament regeneration. Front Bioeng Biotechnol 2022; 10:969282. [PMID: 36394020 PMCID: PMC9644221 DOI: 10.3389/fbioe.2022.969282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 09/16/2023] Open
Abstract
Reconstructed ACL cannot completely restore its functions due to absence of physiologically viable environment for optimal biomaterial-cell interaction. Currently available procedures only mechanically attach grafts to bone without any biological integration. How the ACL cells perform this biological attachment is not fully understood partly due to the absence of appropriate environment to test cell behavior both in vitro and in vivo. Availability of biomimetic models would enable the scientists to better explore the behavior of cells at health and during tissue healing. In this study, it is hypothesized that the collagen fibril diameter distribution in rat ACL changes from a bimodal distribution in the healthy ACL to a unimodal distribution after injury, and that this change can be mimicked in synthetic nanofiber-based constructs. This hypothesis was tested by first creating an injured rat ACL model by applying a mechanical tensile force to the healthy ACL tissue until rupture. Secondly, the collagen fibril diameter distributions of healthy and injured ACL tissue were determined, and polycaprolactone (PCL) constructs were created to mimic the distributions of collagen fibrils in healthy and injured tissues. Findings reveal that the fiber diameter distribution of aligned bimodal PCL constructs were similar to that of the collagen fibrils in native ACL tissue. This study is significant because suggested bimodal and unimodal fibrous model constructs, respectively, represent a healthy and injured tissue environment and the behavior of ACL cells cultured on these constructs may provide significant input on ACL regeneration mechanism.
Collapse
Affiliation(s)
- Abass Ojo Adeoye
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Fariza Mukasheva
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Smail Smatov
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Bakhytbol Khumyrzakh
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Sanazar Kadyr
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Zarina Shulgau
- National Center for Biotechnology, Laboratory of Toxicology and Pharmacology, Astana, Kazakhstan
| | - Cevat Erisken
- Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
9
|
Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka R, Junka RA, Gosiewska A, Hariri RJ, Brigido SA. A decellularized flowable placental connective tissue matrix supports cellular functions of human tenocytes in vitro. J Exp Orthop 2022; 9:69. [PMID: 35849201 PMCID: PMC9294091 DOI: 10.1186/s40634-022-00509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Injectable connective tissue matrices (CTMs) may promote tendon healing, given their minimally invasive properties, structural and biochemical extracellular matrix components, and capacity to fill irregular spaces. The purpose of this study is to evaluate the effects of placental CTMs on the cellular activities of human tenocytes. Decellularization, the removal of cells, cell fragments, and DNA from CTMs, has been shown to reduce the host’s inflammatory response. Therefore, the authors hypothesize that a decellularized CTM will provide a more cell-friendly matrix to support tenocyte functions. Methods Three human placental CTMs were selected for comparison: AmnioFill® (A-CTM), a minimally manipulated, non-viable cellular particulate, BioRenew™ (B-CTM), a liquid matrix, and Interfyl® (I-CTM), a decellularized flowable particulate. Adhesion and proliferation were evaluated using cell viability assays and tenocyte migration using a transwell migration assay. Gene expression of tenocyte markers, cytokines, growth factors, and matrix metalloprotease (MMP) in tenocytes were assessed using quantitative polymerase chain reaction. Results Although A-CTM supported more tenocyte adhesion, I-CTM promoted significantly more tenocyte proliferation compared with A-CTM and B-CTM. Unlike A-CTM, tenocyte migration was higher in I-CTM than the control. The presence of I-CTM also prevented the loss of tenocyte phenotype, attenuated the expression of pro-inflammatory cytokines, growth factors, and MMP, and promoted the expression of antifibrotic growth factor, TGFβ3. Conclusion Compared with A-CTM and B-CTM, I-CTM interacted more favorably with human tenocytes in vitro. I-CTM supported tenocyte proliferation with reduced de-differentiation and attenuation of the inflammatory response, suggesting that I-CTM may support tendon healing and regeneration in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00509-4.
Collapse
Affiliation(s)
- Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nikita John
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr., Easton, PA, 18045, USA
| | - Adam Kuehn
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Desiree Long
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Raja Sivalenka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Radoslaw A Junka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Anna Gosiewska
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA.
| | - Robert J Hariri
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Stephen A Brigido
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| |
Collapse
|
10
|
Grimaldo Ruiz O, Rodriguez Reinoso M, Ingrassia E, Vecchio F, Maniero F, Burgio V, Civera M, Bitan I, Lacidogna G, Surace C. Design and Mechanical Characterization Using Digital Image Correlation of Soft Tissue-Mimicking Polymers. Polymers (Basel) 2022; 14:2639. [PMID: 35808685 PMCID: PMC9269014 DOI: 10.3390/polym14132639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Present and future anatomical models for biomedical applications will need bio-mimicking three-dimensional (3D)-printed tissues. These would enable, for example, the evaluation of the quality-performance of novel devices at an intermediate step between ex-vivo and in-vivo trials. Nowadays, PolyJet technology produces anatomical models with varying levels of realism and fidelity to replicate organic tissues. These include anatomical presets set with combinations of multiple materials, transitions, and colors that vary in hardness, flexibility, and density. This study aims to mechanically characterize multi-material specimens designed and fabricated to mimic various bio-inspired hierarchical structures targeted to mimic tendons and ligaments. A Stratasys® J750™ 3D Printer was used, combining the Agilus30™ material at different hardness levels in the bio-mimicking configurations. Then, the mechanical properties of these different options were tested to evaluate their behavior under uni-axial tensile tests. Digital Image Correlation (DIC) was used to accurately quantify the specimens' large strains in a non-contact fashion. A difference in the mechanical properties according to pattern type, proposed hardness combinations, and matrix-to-fiber ratio were evidenced. The specimens V, J1, A1, and C were selected as the best for every type of pattern. Specimens V were chosen as the leading combination since they exhibited the best balance of mechanical properties with the higher values of Modulus of elasticity (2.21 ± 0.17 MPa), maximum strain (1.86 ± 0.05 mm/mm), and tensile strength at break (2.11 ± 0.13 MPa). The approach demonstrates the versatility of PolyJet technology that enables core materials to be tailored based on specific needs. These findings will allow the development of more accurate and realistic computational and 3D printed soft tissue anatomical solutions mimicking something much closer to real tissues.
Collapse
Affiliation(s)
- Oliver Grimaldo Ruiz
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Mariana Rodriguez Reinoso
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Elena Ingrassia
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Federico Vecchio
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
| | - Filippo Maniero
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Vito Burgio
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Marco Civera
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Ido Bitan
- Stratasys Headquarters, 1 Holtzman St. Science Park, Rehovot P.O. Box 2496, Israel;
| | - Giuseppe Lacidogna
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
| | - Cecilia Surace
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| |
Collapse
|
11
|
Materials Properties and Application Strategy for Ligament Tissue Engineering. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Russo V, El Khatib M, Prencipe G, Cerveró-Varona A, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022; 11:cells11020266. [PMID: 35053383 PMCID: PMC8773518 DOI: 10.3390/cells11020266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
- Correspondence:
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
13
|
Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. NANOMATERIALS 2021; 11:nano11112796. [PMID: 34835562 PMCID: PMC8625229 DOI: 10.3390/nano11112796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023]
Abstract
The anterior cruciate ligament (ACL) is one of the most prone to injury in the human body. Due to its insufficient vascularization and low regenerative capacity, surgery is often required when it is ruptured. Most of the current tissue engineering (TE) strategies are based on scaffolds produced with fibers due to the natural ligament's fibrous structure. In the present work, composite filaments based on poly(L-lactic acid) (PLA) reinforced with graphite nanoplatelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)] were produced by melt mixing, ensuring good filler dispersion. These filaments were produced with diameters of 0.25 mm and 1.75 mm for textile-engineered and 3D-printed ligament scaffolds, respectively. The resulting composite filaments are thermally stable, and the incorporation of graphite increases the stiffness of the composites and decreases the electrical resistivity, as compared to PLA. None of the filaments suffered significant degradation after 27 days. The composite filaments were processed into 3D scaffolds with finely controlled dimensions and porosity by textile-engineered and additive fabrication techniques, demonstrating their potential for ligament TE applications.
Collapse
Affiliation(s)
- Magda Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Carina Gomes
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Isabel Pinho
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Hugo Gonçalves
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Ana C. Vale
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - José A. Covas
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Natália M. Alves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Correspondence: (N.M.A.); (M.C.P.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
- Correspondence: (N.M.A.); (M.C.P.)
| |
Collapse
|
14
|
Thankam FG, Diaz C, Chandra I, Link J, Newton J, Dilisio MF, Agrawal DK. Hybrid interpenetrating hydrogel network favoring the bidirectional migration of tenocytes for rotator cuff tendon regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:467-477. [PMID: 34342931 DOI: 10.1002/jbm.b.34924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/26/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023]
Abstract
Replenishment of tenocytes to the injury site is an ideal strategy to improve healing response and accelerate the tendon ECM regeneration. The present study focused on the synthesis and characterization of a hybrid hydrogel scaffold system poly(propylene-fumarate)-alginate-polyvinyl alcohol-acrylic acid (PAPA) using poly(propylene-fumarate) (PPF), alginate, polyvinyl alcohol (PVA) and acrylic acid and the in vitro investigation of bidirectional mobility of swine shoulder tenocytes (SST) for its potential application in rotator-cuff tendon regeneration. IR analysis revealed the presence of alginate, PPF and PVA segments on the surface, SEM and AFM analyses revealed the porous and nano-topographical features of PAPA, respectively, swelling was 712.6 ± 84.21% with the EWC (%) of 87.59 ± 1.26 having the diffusional exponent and swelling constant 0.551 and 1.8, respectively. PAPA was biodegradable, cytocompatible and supported long-term survival of SSTs. SEM imaging revealed the adhesion, colonization, and sheet formation of SSTs within the PAPA hydrogel network. The SSTs seeded on the PAPA scaffolds were peculiar for their bidirectional migration as the anterograde movement was completed in 9 days whereas the retrograde infiltration occurred up to the depth of 198 μm. These findings suggest the promising translational potential of PAPA scaffold system in the management of rotator cuff tendon injury.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Connor Diaz
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Isaiah Chandra
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Josh Link
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Joseph Newton
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
15
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
16
|
Beisbayeva Z, Zhanbassynova A, Kulzhanova G, Mukasheva F, Erisken C. Change in Collagen Fibril Diameter Distribution of Bovine Anterior Cruciate Ligament upon Injury Can Be Mimicked in a Nanostructured Scaffold. Molecules 2021; 26:molecules26051204. [PMID: 33668154 PMCID: PMC7956598 DOI: 10.3390/molecules26051204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
More than 200,000 people are suffering from Anterior Cruciate Ligament (ACL) related injuries each year in the US. There is an unmet clinical demand for improving biological attachment between grafts and the host tissue in addition to providing mechanical support. For biological graft integration, it is important to provide a physiologically feasible environment for the host cells to enable them to perform their duties. However, behavior of cells during ACL healing and the mechanism of ACL healing is not fully understood partly due to the absence of appropriate environment to test cell behavior both in vitro and in vivo. This study aims at (i) investigating the change in fibril diameter of bovine ACL tissue upon injury and (ii) fabricating nanofiber-based scaffolds to represent the morphology and structure of healthy and injured ACL tissues. We hypothesized that distribution and mean diameter of ACL fibrils will be altered upon injury. Findings revealed that the collagen fibril diameter distribution of bovine ACL changed from bimodal to unimodal upon injury with subsequent decrease in mean diameter. Polycaprolactone (PCL) scaffold fiber diameter distribution exhibited similar bimodal and unimodal distribution behavior to qualitatively represent the cases of healthy and injured ACL, respectively. The native ACL tissue demonstrated comparable modulus values only with the aligned bimodal PCL scaffolds. There was significant difference between mechanical properties of aligned bimodal and unaligned unimodal PCL scaffolds. We believe that the results obtained from measurements of diameter of collagen fibrils of native bovine ACL tissue can serve as a benchmark for scaffold design.
Collapse
Affiliation(s)
- Zhuldyz Beisbayeva
- Department of Chemical and Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; (Z.B.); (A.Z.); (F.M.)
| | - Ainur Zhanbassynova
- Department of Chemical and Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; (Z.B.); (A.Z.); (F.M.)
| | - Gulzada Kulzhanova
- Department of Biological Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan;
| | - Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; (Z.B.); (A.Z.); (F.M.)
| | - Cevat Erisken
- Department of Chemical and Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; (Z.B.); (A.Z.); (F.M.)
- Correspondence:
| |
Collapse
|
17
|
Nakajima T, Ikeya M. Development of pluripotent stem cell-based human tenocytes. Dev Growth Differ 2020; 63:38-46. [PMID: 33270251 DOI: 10.1111/dgd.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step-wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human-induced PSCs and their application in cell therapy have long been challenging. PSC-derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|
20
|
Gouveia PJ, Hodgkinson T, Amado I, Sadowska JM, Ryan AJ, Romanazzo S, Carroll S, Cryan SA, Kelly DJ, O'Brien FJ. Development of collagen-poly(caprolactone)-based core-shell scaffolds supplemented with proteoglycans and glycosaminoglycans for ligament repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111657. [PMID: 33545824 DOI: 10.1016/j.msec.2020.111657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 01/13/2023]
Abstract
Core-shell scaffolds offer a promising regenerative solution to debilitating injuries to anterior cruciate ligament (ACL) thanks to a unique biphasic structure. Nevertheless, current core-shell designs are impaired by an imbalance between permeability, biochemical and mechanical cues. This study aimed to address this issue by creating a porous core-shell construct which favors cell infiltration and matrix production, while providing mechanical stability at the site of injury. The developed core-shell scaffold combines an outer shell of electrospun poly(caprolactone) fibers with a freeze-dried core of type I collagen doped with proteoglycans (biglycan, decorin) or glycosaminoglycans (chondroitin sulphate, dermatan sulphate). The aligned fibrous shell achieved an elastic modulus akin of the human ACL, while the porous collagen core is permeable to human mesenchymal stem cell (hMSC). Doping of the core with the aforementioned biomolecules led to structural and mechanical changes in the pore network. Assessment of cellular metabolic activity and scaffold contraction shows that hMSCs actively remodel the matrix at different degrees, depending on the core's doping formulation. Additionally, immunohistochemical staining and mRNA transcript levels show that the collagen-chondroitin sulphate formulation has the highest matrix production activity, while the collagen-decorin formulation featured a matrix production profile more characteristic of the undamaged tissue. Together, this demonstrates that scaffold doping with target biomolecules leads to distinct levels of cell-mediated matrix remodeling. Overall, this work resulted in the development of a versatile and robust platform with a combination of mechanical and biochemical features that have a significant potential in promoting the repair process of ACL tissue.
Collapse
Affiliation(s)
- Pedro J Gouveia
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Isabel Amado
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Alan J Ryan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland
| | - Sara Romanazzo
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland
| | - Simon Carroll
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland
| | | | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, Ireland.
| |
Collapse
|
21
|
Characterization of Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering. Polymers (Basel) 2020; 12:polym12092163. [PMID: 32971891 PMCID: PMC7569883 DOI: 10.3390/polym12092163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022] Open
Abstract
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.
Collapse
|
22
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
23
|
K N, Ca V, Joseph J, U A, John A, Abraham A. Mesenchymal Stem Cells Seeded Decellularized Tendon Scaffold for Tissue Engineering. Curr Stem Cell Res Ther 2020; 16:155-164. [PMID: 32707028 DOI: 10.2174/1574888x15666200723123901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tendon is a collagenous tissue to connect bone and muscle. Healing of damaged/injured tendon is the primary clinical challenge in musculoskeletal regeneration because they often react poorly to treatment. Tissue engineering (a triad strategy of scaffolds, cells and growth factors) may have the potential to improve the quality of tendon tissue healing under such impaired situations. Tendon tissue engineering aims to synthesize graft alternatives to repair the injured tendon. Biological scaffolds derived from decellularized tissue may be a better option as their biomechanical properties are similar to the native tissue. This review is designed to provide background information on the current challenges in curing torn/worn out the tendon and the clinical relevance of decellularized scaffolds for such applications.
Collapse
Affiliation(s)
- Niveditha K
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Vineeth Ca
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Arun U
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie John
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
24
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
25
|
Silva M, Ferreira FN, Alves NM, Paiva MC. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology 2020; 18:23. [PMID: 32000800 PMCID: PMC6993465 DOI: 10.1186/s12951-019-0556-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Ligaments and tendons are fibrous tissues with poor vascularity and limited regeneration capacity. Currently, a ligament/tendon injury often require a surgical procedure using auto- or allografts that present some limitations. These inadequacies combined with the significant economic and health impact have prompted the development of tissue engineering approaches. Several natural and synthetic biodegradable polymers as well as composites, blends and hybrids based on such materials have been used to produce tendon and ligament scaffolds. Given the complex structure of native tissues, the production of fiber-based scaffolds has been the preferred option for tendon/ligament tissue engineering. Electrospinning and several textile methods such as twisting, braiding and knitting have been used to produce these scaffolds. This review focuses on the developments achieved in the preparation of tendon/ligament scaffolds based on different biodegradable polymers. Several examples are overviewed and their processing methodologies, as well as their biological and mechanical performances, are discussed.
Collapse
Affiliation(s)
- Magda Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Fernando N Ferreira
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal.
| | - Maria C Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal.
| |
Collapse
|
26
|
Sensini A, Cristofolini L, Zucchelli A, Focarete ML, Gualandi C, DE Mori A, Kao AP, Roldo M, Blunn G, Tozzi G. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. J Microsc 2019; 277:160-169. [PMID: 31339556 DOI: 10.1111/jmi.12827] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The regeneration of injured tendons and ligaments is challenging because the scaffolds needs proper mechanical properties and a biomimetic morphology. In particular, the morphological arrangement of scaffolds is a key point to drive the cells growth to properly regenerate the collagen extracellular matrix. Electrospinning is a promising technique to produce hierarchically structured nanofibrous scaffolds able to guide cells in the regeneration of the injured tissue. Moreover, the dynamic stretching in bioreactors of electrospun scaffolds had demonstrated to speed up cell shape modifications in vitro. The aim of the present study was to combine different imaging techniques such as high-resolution X-ray tomography (XCT), scanning electron microscopy (SEM), fluorescence microscopy and histology to investigate if hierarchically structured poly (L-lactic acid) and collagen electrospun scaffolds can induce morphological modifications in human fibroblasts, while cultured in static and dynamic conditions. After 7 days of parallel cultures, the results assessed that fibroblasts had proliferated on the external nanofibrous sheath of the static scaffolds, elongating themselves circumferentially. The dynamic cultures revealed a preferential axial orientation of fibroblasts growth on the external sheath. The aligned nanofibre bundles inside the hierarchical scaffolds instead, allowed a physiological distribution of the fibroblasts along the nanofibre direction. Inside the dynamic scaffolds, cells appeared thinner compared with the static counterpart. This study had demonstrated that hierarchically structured electrospun scaffolds can induce different fibroblasts morphological modifications during static and dynamic conditions, modifying their shape in the direction of the applied loads. LAY DESCRIPTION: To enhance the regeneration of injured tendons and ligaments cells need to growth on dedicated structures (scaffolds) with mechanical properties and a fibrous morphology similar to the natural tissue. In particular, the morphological organisation of scaffolds is fundamental in leading cells to colonise them, regenerating the collagen extracellular matrix. Electrospinning is a promising technique to produce fibres with a similar to the human collagen fibres, suitable to design complex scaffolds able to guide cells in the reconstruction of the natural tissue. Moreover, it is well established that the cyclic stretching of these scaffolds inside dedicated systems called bioreactors, can speed up cells growth and their shape modification. The aim of the present study was to investigate how hierarchically structured electrospun scaffolds, made of resorbable material such as poly(L-lactic acid) and collagen, could induce morphological changes in human fibroblasts, while cultured during static and dynamic conditions. These scaffolds were composed by an external electrospun membrane that grouped inside it a ring-shaped bundle, made of axially aligned nanofibres, resembling the morphological arrangement of tendon and ligament tissue. After 7 days of parallel cultures, the scaffolds were investigated using the following imaging techniques: (i) high-resolution X-ray tomography (XCT); (ii) scanning electron microscopy (SEM); (iii) fluorescence microscopy and (iv) histology. The results showed that fibroblasts were able to grow on the external nanofibrous sheath of the static scaffolds, by elongating themselves along their circumference. The dynamic cultures revealed instead a preferential axial orientation of fibroblasts grown on the external sheath. The aligned nanofibre bundles inside the hierarchical scaffolds allowed an axial distribution of the fibroblasts along the nanofibres direction. This study has demonstrated that the electrospun hierarchically structured scaffolds investigated can modify the fibroblasts morphology both in static and dynamic conditions, in relation with the direction of the applied loads.
Collapse
Affiliation(s)
- A Sensini
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - L Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - A Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M L Focarete
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - C Gualandi
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - A DE Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - A P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, U.K
| | - M Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - G Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - G Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, U.K
| |
Collapse
|