1
|
Tang D, Guan W, Yang X, Li Z, Zhao W, Liu X. TIM8 Deficiency in Yeast Induces Endoplasmic Reticulum Stress and Shortens the Chronological Lifespan. Biomolecules 2025; 15:271. [PMID: 40001574 PMCID: PMC11853210 DOI: 10.3390/biom15020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Yeast TIM8 was initially identified as a homolog of human TIMM8A/DDP1, which is associated with human deafness-dystonia syndrome. Tim8p is located in the mitochondrial intermembrane space and forms a hetero-oligomeric complex with Tim13p to facilitate protein transport through the TIM22 translocation system. Previous research has indicated that TIM8 is not essential for yeast survival but does affect the import of Tim23p in the absence of the Tim8-Tim13 complex. Previous research on TIM8 has focused mainly on its involvement in the mitochondrial protein transport pathway, and the precise biological function of TIM8 remains incompletely understood. In this study, we provide the first report that yeast TIM8 is associated with the endoplasmic reticulum (ER) stress response and chronological senescence. We found that deletion of TIM8 leads to both oxidative stress and ER stress in yeast cells while increasing resistance to the ER stress inducer tunicamycin (TM), which is accompanied by an enhanced basic unfolded protein response (UPR). More importantly, TIM8 deficiency can lead to a shortened chronological lifespan (CLS) but does not affect the replicative lifespan (RLS). Moreover, we found that improving the antioxidant capacity further increased TM resistance in the tim8Δ strain. Importantly, we provide evidence that the knockdown of TIMM8A in ARPE-19 human retinal pigment epithelium cells can also induce ER stress, suggesting the potential function of the TIM8 gene in ER stress is conserved from budding yeast to higher eukaryotes. In summary, these results suggest novel roles for TIM8 in maintaining ER homeostasis and CLS maintenance.
Collapse
Affiliation(s)
- Dong Tang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| | - Wenbin Guan
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Xiaodi Yang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Zhongqin Li
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (W.G.); (X.Y.); (Z.L.)
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
| |
Collapse
|
2
|
Wang Y, Ruan L, Li R. GPI-anchored Gas1 protein regulates cytosolic proteostasis in budding yeast. G3 (BETHESDA, MD.) 2024; 14:jkad263. [PMID: 38289859 PMCID: PMC10917523 DOI: 10.1093/g3journal/jkad263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The decline in protein homeostasis (proteostasis) is a hallmark of cellular aging and aging-related diseases. Maintaining a balanced proteostasis requires a complex network of molecular machineries that govern protein synthesis, folding, localization, and degradation. Under proteotoxic stress, misfolded proteins that accumulate in cytosol can be imported into mitochondria for degradation through the "mitochondrial as guardian in cytosol" (MAGIC) pathway. Here, we report an unexpected role of Gas1, a cell wall-bound glycosylphosphatidylinositol (GPI)-anchored β-1,3-glucanosyltransferase in the budding yeast, in differentially regulating MAGIC and ubiquitin-proteasome system (UPS). Deletion of GAS1 inhibits MAGIC but elevates protein ubiquitination and UPS-mediated protein degradation. Interestingly, we found that the Gas1 protein exhibits mitochondrial localization attributed to its C-terminal GPI anchor signal. But this mitochondria-associated GPI anchor signal is not required for mitochondrial import and degradation of misfolded proteins through MAGIC. By contrast, catalytic inactivation of Gas1 via the gas1-E161Q mutation inhibits MAGIC but not its mitochondrial localization. These data suggest that the glucanosyltransferase activity of Gas1 is important for regulating cytosolic proteostasis.
Collapse
Affiliation(s)
- Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
3
|
Fink EE, Sona S, Tran U, Desprez PE, Bradley M, Qiu H, Eltemamy M, Wee A, Wolkov M, Nicolas M, Min B, Haber GP, Wessely O, Lee BH, Ting AH. Single-cell and spatial mapping Identify cell types and signaling Networks in the human ureter. Dev Cell 2022; 57:1899-1916.e6. [PMID: 35914526 PMCID: PMC9381170 DOI: 10.1016/j.devcel.2022.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/16/2023]
Abstract
Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surbhi Sona
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uyen Tran
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pierre-Emmanuel Desprez
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, CHU Lille, Claude Huriez Hospital, Université Lille, 59000 Lille, France
| | - Matthew Bradley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hong Qiu
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohamed Eltemamy
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alvin Wee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Madison Wolkov
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marlo Nicolas
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Georges-Pascal Haber
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Kumawat R, Tomar RS. Heavy metal exposure induces Yap1 and Hac1 mediated derepression of GSH1 and KAR2 by Tup1-Cyc8 complex. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128367. [PMID: 35123133 DOI: 10.1016/j.jhazmat.2022.128367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution is one of the most severe environmental problem. The toxicity of heavy metals is correlated with the production of increased reactive oxygen species and misfolded protein accumulation. Exposures of these metals even at low concentrations adversely affect human health. The Tup1-Cyc8 complex has been identified as a general repressor complex, is also involved in the derepression of few target genes in association with gene-specific activator proteins. Exposure to heavy metals activates the antioxidant defense mechanism, essential for cellular homeostasis. Here we present evidence that TUP1/CYC8 deleted cells are compromised to tolerate heavy metals exposure. Upon metal-induced oxidative stress, Yeast AP-1p (Yap1) recruits the Tup1-Cyc8 complex to the promoter of oxidative stress response gene GSH1 and derepresses its expression. We also found that the TUP1/CYC8 deficient cells have altered endoplasmic reticulum (ER) homeostasis and fail to activate the unfolded protein response pathway. In response to ER stress, the Tup1-Cyc8 complex, with the help of activated Hac1, binds to the promoter of ER chaperone KAR2 and activates its transcription. Altogether, our findings suggest that the Tup1-Cyc8 complex is crucial for the activation of genes that are involved in the mitigation of oxidative and ER stress during heavy metal exposure.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, India.
| |
Collapse
|
5
|
Parreira VDSC, Santos LGC, Rodrigues ML, Passetti F. ExVe: The knowledge base of orthologous proteins identified in fungal extracellular vesicles. Comput Struct Biotechnol J 2021; 19:2286-2296. [PMID: 33995920 PMCID: PMC8102145 DOI: 10.1016/j.csbj.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Collapse
Affiliation(s)
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil
| |
Collapse
|